当前位置: X-MOL 学术Pervasive Mob. Comput. › 论文详情
Learning methods for RSSI-based geolocation: A comparative study
Pervasive and Mobile Computing ( IF 2.725 ) Pub Date : 2020-06-20 , DOI: 10.1016/j.pmcj.2020.101199
Kevin Elgui; Pascal Bianchi; François Portier; Olivier Isson

In this paper, we investigate machine learning approaches addressing the problem of geolocation. First, we review some classical learning methods to build a radio map. These methods are split in two categories, which we refer to as likelihood-based methods and fingerprinting methods. Then, we provide a novel geolocation approach in each of these two categories. The first proposed technique relies on a semi-parametric Nadaraya–Watson (NW) estimator of the likelihood, followed by a maximum a posteriori (MAP) estimator of the object’s position. The second technique consists in learning a proper metric on the dataset, constructed by means of a Gradient boosting regressor: a k-nearest neighbor algorithm is then used to estimate the position. The proposed methods are compared on two data sets originated from Sigfox network, and an indoor dataset performed in a three-story building. Experiments show the interest of the proposed methods, both in terms of location estimation performance, and ability to build radio maps.
更新日期:2020-06-27

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug