当前位置: X-MOL 学术Pattern Recogn. Lett. › 论文详情
Data augmentation method for improving the accuracy of human pose estimation with cropped images
Pattern Recognition Letters ( IF 3.255 ) Pub Date : 2020-06-20 , DOI: 10.1016/j.patrec.2020.06.015
Soonchan Park; Sang-baek Lee; Jinah Park

Neural networks have improved the accuracy of human pose estimation from a single RGB image. However, such estimation remains difficult, especially when the human body is only partially visible due to a limited field of view of the camera or occlusions. In this paper, we introduce a data augmentation method called body-cropping augmentation (BCA), which generalizes the dataset for effective training in human pose estimation. This technique includes the policies of data generation and the training strategy using the augmented data. The experiments with the COCO val2017 dataset with ground-truth bounding boxes show BCA consistently enhances accuracies of state-of-the-art neural networks by an average of 1.08% without any modification to the network architecture. Moreover, the proposed BCA technique effectively reduces the false negatives of localizing keypoints, especially in an input image with a few visible keypoints.
更新日期:2020-06-27

 

全部期刊列表>>
AI核心技术
10years
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
廖矿标
李远
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug