当前位置: X-MOL 学术Neuron › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soma-Targeted Imaging of Neural Circuits by Ribosome Tethering.
Neuron ( IF 14.7 ) Pub Date : 2020-06-22 , DOI: 10.1016/j.neuron.2020.05.005
Yiming Chen 1 , Heeun Jang 2 , Perry W E Spratt 1 , Seher Kosar 3 , David E Taylor 1 , Rachel A Essner 3 , Ling Bai 3 , David E Leib 1 , Tzu-Wei Kuo 1 , Yen-Chu Lin 3 , Mili Patel 1 , Aygul Subkhangulova 2 , Saul Kato 4 , Evan H Feinberg 5 , Kevin J Bender 4 , Zachary A Knight 6 , Jennifer L Garrison 7
Affiliation  

Neuroscience relies on techniques for imaging the structure and dynamics of neural circuits, but the cell bodies of individual neurons are often obscured by overlapping fluorescence from axons and dendrites in surrounding neuropil. Here, we describe two strategies for using the ribosome to restrict the expression of fluorescent proteins to the neuronal soma. We show first that a ribosome-tethered nanobody can be used to trap GFP in the cell body, thereby enabling direct visualization of previously undetectable GFP fluorescence. We then design a ribosome-tethered GCaMP for imaging calcium dynamics. We show that this reporter faithfully tracks somatic calcium dynamics in the mouse brain while eliminating cross-talk between neurons caused by contaminating neuropil. In worms, this reporter enables whole-brain imaging with faster kinetics and brighter fluorescence than commonly used nuclear GCaMPs. These two approaches provide a general way to enhance the specificity of imaging in neurobiology.



中文翻译:

通过核糖体束缚对神经回路进行体细胞靶向成像。

神经科学依赖于对神经回路的结构和动力学进行成像的技术,但单个神经元的细胞体经常被周围神经细胞中轴突和树突的重叠荧光所掩盖。在这里,我们描述了使用核糖体限制荧光蛋白在神经元胞体中表达的两种策略。我们首先表明,核糖体束缚的纳米体可用于将 GFP 捕获在细胞体中,从而能够直接可视化以前无法检测到的 GFP 荧光。然后,我们设计了一个核糖体栓系的 GCaMP,用于成像钙动力学。我们表明,该记者忠实地跟踪了小鼠大脑中的体细胞钙动力学,同时消除了由污染神经细胞引起的神经元之间的串扰。在蠕虫中,与常用的核 GCaMP 相比,该报告器能够以更快的动力学和更亮的荧光进行全脑成像。这两种方法提供了一种增强神经生物学成像特异性的通用方法。

更新日期:2020-08-05
down
wechat
bug