当前位置: X-MOL 学术Ecol Modell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A physical-biological coupled ecosystem model for integrated aquaculture of bivalve and seaweed in sanggou bay
Ecological Modelling ( IF 2.6 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.ecolmodel.2020.109181
L.I.N. Fan , D.U. Meirong , L.I.U. Hui , F.A.N.G. Jianguang , ASPLIN Lars , J.I.A.N.G. Zengjie

Abstract To understand the biological process in an aquaculture dominant coastal system and to provide a tool for further aquaculture management, an ecosystem model has been implemented to study the aquaculture-environmental interaction and the carrying capacity for Sanggou Bay. The model coupled the pelagic system, kelp growth dynamics, oyster energetics, and population dynamics with hourly hydrodynamic and water quality data. The study area was divided into four boxes according to similarities in the hydrological environment and aquaculture layout. Scenario simulations were conducted with different combinations of oyster and kelp seeding densities to examine the environmental impacts and production under different aquaculture layouts. Results showed that the model could capture the main characteristics of observed environmental variables and culture organism growth. Increased seeding density of both oysters and kelp generally leads to increased production with diminished individual growth. Kelp aquaculture plays a leading role in the nutrient cycle in the bay, acting as a large reception tank during the rapid growth period. The model results indicate that there is still potential to increase production for both oyster and kelp in Sanggou bay. The current aquaculture practice seems to have the right balance of carrying capacity, management efforts, and other costs under the existing production procedures. The ecosystem model is a promising tool for further study with sustained observation effort and better boundary conditions.

中文翻译:

桑沟湾双壳海藻综合养殖的物理-生物耦合生态系统模型

摘要 为了了解水产养殖主导的沿海系统的生物过程并为进一步的水产养殖管理提供工具,已实施生态系统模型来研究桑沟湾的水产养殖-环境相互作用和承载能力。该模型将远洋系统、海带生长动态、牡蛎能量学和种群动态与每小时的水动力和水质数据相结合。根据水文环境和养殖布局的相似性,将研究区划分为四个方格。使用牡蛎和海带播种密度的不同组合进行情景模拟,以检查不同水产养殖布局下的环境影响和产量。结果表明,该模型可以捕捉观察到的环境变量和培养生物生长的主要特征。牡蛎和海带的播种密度增加通常会导致产量增加,但个体生长减少。海带养殖在海湾养分循环中起主导作用,在快速生长时期充当大型接收池。模型结果表明,桑沟湾牡蛎和海带的产量仍有增加的潜力。当前的水产养殖实践似乎在现有生产程序下在承载能力、管理工作和其他成本之间取得了适当的平衡。生态系统模型是一种很有前途的工具,可以通过持续的观察工作和更好的边界条件进行进一步研究。牡蛎和海带的播种密度增加通常会导致产量增加,但个体生长减少。海带养殖在海湾养分循环中起主导作用,在快速生长时期充当大型接收池。模型结果表明,桑沟湾牡蛎和海带的产量仍有增加的潜力。当前的水产养殖实践似乎在现有生产程序下在承载能力、管理工作和其他成本之间取得了适当的平衡。生态系统模型是一种很有前途的工具,可以通过持续的观察工作和更好的边界条件进行进一步研究。牡蛎和海带的播种密度增加通常会导致产量增加,但个体生长减少。海带养殖在海湾养分循环中起主导作用,在快速生长时期充当大型接收池。模型结果表明,桑沟湾牡蛎和海带的产量仍有增加的潜力。当前的水产养殖实践似乎在现有生产程序下在承载能力、管理工作和其他成本之间取得了适当的平衡。生态系统模型是一种很有前途的工具,可以通过持续的观察工作和更好的边界条件进行进一步研究。在快速增长时期充当大型接收槽。模型结果表明,桑沟湾牡蛎和海带的产量仍有增加的潜力。当前的水产养殖实践似乎在现有生产程序下在承载能力、管理工作和其他成本之间取得了适当的平衡。生态系统模型是一种很有前途的工具,可以通过持续的观察工作和更好的边界条件进行进一步研究。在快速增长时期充当大型接收槽。模型结果表明,桑沟湾牡蛎和海带的产量仍有增加的潜力。当前的水产养殖实践似乎在现有生产程序下在承载能力、管理工作和其他成本之间取得了适当的平衡。生态系统模型是一种很有前途的工具,可以通过持续的观察工作和更好的边界条件进行进一步研究。
更新日期:2020-09-01
down
wechat
bug