当前位置: X-MOL 学术Comput. Math. Appl. › 论文详情
Hierarchical high order finite element spaces in H(div,Ω)×H1(Ω) for a stabilized mixed formulation of Darcy problem
Computers & Mathematics with Applications ( IF 3.370 ) Pub Date : 2020-06-20 , DOI: 10.1016/j.camwa.2020.06.003
Maicon R. Correa; Juan C. Rodriguez; Agnaldo M. Farias; Denise de Siqueira; Philippe R.B. Devloo

The classical dual mixed finite element method for flow simulations is based on H(div,Ω) conforming approximation spaces for the flux, which guarantees continuous normal components on element interfaces, and discontinuous approximations in L2(Ω) for the pressure. However, stability and convergence can only be obtained for compatible approximation spaces. Stabilized finite element methods may provide an alternative stable procedure to avoid this kind of delicate balance. The main purpose of this paper is to present a high-order finite element methodology to solve the Darcy problem based on the combination of an unconditionally stable mixed finite element method with a hierarchical methodology for the construction of finite dimensional subspaces of H(div,Ω) and H1(Ω). The chosen stabilized method is free of mesh dependent stabilization parameters and allows for the use of different high order finite element approximations for the flux and the pressure variables, without requiring any compatibility constraint, as required in mixed methods for these problems. Convergence studies are presented comparing the numerical solutions obtained for different approximation orders on quadrilateral elements with the ones given by classical mixed formulation with Raviart–Thomas elements.
更新日期:2020-07-07

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
南京工业大学
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
湖南大学
清华大学
吴杰
赵延川
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug