当前位置: X-MOL 学术Chemosphere › 论文详情
Assessment of reproductive and developmental effects of graphene oxide on Japanese medaka (Oryzias latipes)
Chemosphere ( IF 5.778 ) Pub Date : 2020-06-22 , DOI: 10.1016/j.chemosphere.2020.127221
Asok K. Dasmahapatra; Doris K. Powe; Thabitha P.S. Dasari; Paul B. Tchounwou

Due to its unique properties, graphene oxide (GO) has potential for biomedical and electronic applications, however environmental contamination including aquatic ecosystem is inevitable. Moreover, potential risks of GO in aquatic life are inadequately explored. Present study was designed to evaluate GO as an endocrine disrupting chemical (EDC) using the model Japanese medaka (Oryzias latipes). GO was injected intraperitoneally (25–200 μg/g) once to breeding pairs and continued pair breeding an additional 21 days. Eggs laid were analyzed for fecundity and the fertilized eggs were evaluated for developmental abnormalities including hatching. Histopathological evaluation of gonads, liver, and kidneys was made 21 days post-injection. LD50 was found to be sex-dependent. Fecundity tended to reduce in a dose-dependent manner during early post-injection days; however, the overall evaluation showed no significant difference. The hatchability of embryos was reduced significantly in the 200 μg/g group; edema (yolk and cardiovascular) and embryo-mortality remained unaltered. Histopathological assessment identified black particles, probably agglomerated GO, in the gonads of GO-treated fish. However, folliculogenesis in stromal compartments of ovary and the composition of germinal elements in testis remained almost unaltered. Moreover, granulosa and Leydig cells morphology did not indicate any significant EDC-related effects. Although liver and kidney histopathology did not show GO as an EDC, some GO-treated fish accumulated proteinaceous fluid in hepatic vessels and induced hyperplasia in interstitial lymphoid cells (HIL) located in kidneys. GO agglomerated in medaka gonads after 21-days post-injection. However, gonad histopathology including granulosa and Leydig cells alterations were associated with GO toxicity rather than EDC effects.
更新日期:2020-06-29

 

全部期刊列表>>
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
复旦大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
陈永胜
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug