当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber
Carbon ( IF 10.5 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.carbon.2020.06.014
Yan-Li Wang , Shu-Hao Yang , Hui-Ya Wang , Guang-Sheng Wang , Xiao-Bo Sun , Peng-Gang Yin

Abstract The perfect control over the constituent and architecture of porous nanomaterials is still a significant challenge in developing high performance electromagnetic wave absorption materials. In this work, we have designed and prepared a novel lightweight electromagnetic wave absorption material with the combination of hollow structure and bimetallic constituents by the thermal decomposition of metal−organic framework (MOF) ZIF-67. We found that by introducing additional metal Nickle into the porous Co/C composites, the CoNi/C-800-PVDF nanocomposite could yield an excellent reflection loss of −61.02 dB at 13.68 GHz and simultaneously possess effective absorbing bandwidth of 5.2 GHz with lower filler loading as 10 wt%, which corresponding to a less absorber thickness of 2 mm. These results demonstrate that the synergistic effects between the bimetallic components and hollow structure of novel CoNi/C composite optimize impedance matching, and thus improve the absorption performance greatly. The properties of specific surface area, interface polarization, dipole polarization, ferromagnetic resonance, eddy current loss and multiple scattering are investigated to further explain the high performance of materials.

中文翻译:

MOFs中空多孔CoNi/C复合纳米材料用于高效轻质电磁波吸收器

摘要 对多孔纳米材料的组成和结构的完美控制仍然是开发高性能电磁波吸收材料的重大挑战。在这项工作中,我们通过金属有机骨架 (MOF) ZIF-67 的热分解设计并制备了一种新型轻质电磁波吸收材料,该材料具有中空结构和双金属成分的组合。我们发现,通过在多孔 Co/C 复合材料中引入额外的金属镍​​,CoNi/C-800-PVDF 纳米复合材料可以在 13.68 GHz 下产生 -61.02 dB 的出色反射损耗,同时具有 5.2 GHz 的有效吸收带宽和较低的填料负载为 10 wt%,这对应于 2 mm 的较小吸收器厚度。这些结果表明,双金属成分与新型 CoNi/C 复合材料的空心结构之间的协同效应优化了阻抗匹配,从而大大提高了吸收性能。研究了比表面积、界面极化、偶极极化、铁磁共振、涡流损耗和多重散射的特性,以进一步解释材料的高性能。
更新日期:2020-10-01
down
wechat
bug