当前位置: X-MOL 学术World J. Microbiol. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A transcriptome analysis of the antibacterial mechanism of flavonoids from Sedum aizoon L. against Shewanella putrefaciens
World Journal of Microbiology and Biotechnology ( IF 4.0 ) Pub Date : 2020-06-20 , DOI: 10.1007/s11274-020-02871-w
Jing Wang 1 , Zongyu Chi 1 , Ke Zhao 1 , Hongfei Wang 1 , Xin Zhang 1 , Feng Xu 1 , Xingfeng Shao 1 , Yingying Wei 1
Affiliation  

Flavonoids from Sedum aizoon L. (FSAL) possess prominent antibacterial activity against Shewanella putrefaciens isolated from sea food. In the current study, the involved molecular mechanisms were investigated using transcriptome analyses combined with bioinformatics analysis in vitro for the first time. Results showed that treatment of FSAL (1.0 MIC) damaged the permeability and integrity of cell membrane and induced 721 differentially expressed genes (DEGs) in tested bacteria at transcriptional levels, including 107 DEGs were up-regulated and 614 DEGs were down-regulated. In addition, the RNA-Seq analysis revealed that the majority of DEGs mainly involved in pathways of lipopolysaccharide biosynthesis, glycerophospholipid metabolism, biosynthesis of amino acids, purine metabolism, ABC transporters and response to stimulus. In summary, the integrated results indicated that the intervention of FSAL induced destruction of cell wall and membrane, disorder of the metabolic process and redox balance, and damage of nucleic acids in S. putrefaciens, at last resulted in the death of cells. This study provided new insights into the anti- S. putrefaciens molecular mechanism underlying the treatment of FSAL, which may be served as the basis guide for identifying potential antimicrobial targets and application of FSAL in food safety.

中文翻译:

景天黄酮类化合物对腐败希瓦氏菌抗菌机制的转录组分析

来自 Sedum aizoon L. (FSAL) 的黄酮类化合物对从海鲜中分离出的腐败希瓦氏菌具有显着的抗菌活性。在目前的研究中,首次使用转录组分析结合体外生物信息学分析研究了所涉及的分子机制。结果表明,FSAL(1.0 MIC)处理破坏细胞膜的通透性和完整性,并在转录水平上诱导受试细菌中的721个差异表达基因(DEGs),其中107个DEGs上调,614个DEGs下调。此外,RNA-Seq 分析表明,大多数 DEG 主要参与脂多糖生物合成、甘油磷脂代谢、氨基酸生物合成、嘌呤代谢、ABC 转运蛋白和对刺激的反应等途径。总之,综合结果表明,FSAL的干预导致腐败链球菌细胞壁和膜的破坏,代谢过程和氧化还原平衡的紊乱,以及核酸的破坏,最终导致细胞死亡。本研究为 FSAL 治疗背后的抗腐败链球菌分子机制提供了新的见解,可作为确定潜在抗菌靶点和 FSAL 在食品安全中应用的基础指南。
更新日期:2020-06-20
down
wechat
bug