当前位置: X-MOL 学术Mol. Neurobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ischemic Preconditioning Upregulates Decoy Receptors to Protect SH-SY5Y Cells from OGD Induced Cellular Damage by Inhibiting TRAIL Pathway and Agitating PI3K/Akt Pathway.
Molecular Neurobiology ( IF 5.1 ) Pub Date : 2020-06-20 , DOI: 10.1007/s12035-020-01978-3
Wei Jin 1 , Wei Xu 2 , Xiaoxiao Zhang 3 , Chuan-Cheng Ren 4
Affiliation  

As ischemic preconditioning (IPC) represents a potential therapy against cerebral ischemia, the purpose of the present study is to explore the molecular mechanisms of ischemic preconditioning induced cerebral protective effect. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, which induces apoptosis through binding to its death receptors (DR4 and DR5). When TRAIL binds to decoy receptors (DcR1 and DcR2), as DcRs lack intact cytoplasmic death domain, TRAIL fails to induce neuronal apoptosis. In the present study, we demonstrated that ischemic preconditioning upregulated DcR1 and DcR2, which subsequently inhibited oxygen glucose deprivation-induced cellular apoptosis. Then, we investigated the protective molecular mechanism of DcRs after ischemic preconditioning treatment. Results showed that DcR1 could competitively bind to TRAIL and partially inhibit TRAIL-induced cellular apoptosis. On the other hand, DcR2 could disturb DRs-associated death-inducing signaling complex formation (DISC), which further inhibited capase-8 activation. Besides, we also found that ischemic preconditioning activated IPC-induced Akt phosphorylation via regulating DcR2 level. Thus, ischemic preconditioning upregulated decoy receptors, which protected cells from oxygen glucose deprivation-induced cellular damage by inhibiting TRAIL-induced apoptosis and agitating PI3K/Akt pathway. Our data complemented the knowledge of neuroprotective mechanism of ischemic preconditioning and provided new evidence for supporting its clinical application.



中文翻译:

缺血预处理通过抑制TRAIL途径和搅动PI3K / Akt途径来上调诱饵受体,以保护SH-SY5Y细胞免受OGD诱导的细胞损伤。

由于缺血预处理(IPC)代表了一种针对脑缺血的潜在治疗方法,因此本研究的目的是探讨缺血预处理引起的脑保护作用的分子机制。肿瘤坏死因子相关凋亡诱导配体(TRAIL)是肿瘤坏死因子超家族的成员,其通过与其死亡受体(DR4和DR5)结合而诱导凋亡。当TRAIL结合诱饵受体(DcR1和DcR2)时,由于DcR缺少完整的细胞质死亡域,因此TRAIL无法诱导神经元凋亡。在本研究中,我们证明了缺血预处理可以上调DcR1和DcR2,从而抑制氧葡萄糖剥夺引起的细胞凋亡。然后,我们研究了缺血预处理后DcRs的保护性分子机制。结果表明,DcR1可以竞争性结合TRAIL并部分抑制TRAIL诱导的细胞凋亡。另一方面,DcR2可能会干扰DRs相关的死亡诱导信号复合物的形成(DISC),这进一步抑制了capase-8的激活。此外,我们还发现缺血预处理通过调节DcR2水平激活了IPC诱导的Akt磷酸化。因此,缺血预处理可以上调诱饵受体,通过抑制TRAIL诱导的细胞凋亡和搅动PI3K / Akt途径,保护细胞免受氧葡萄糖剥夺引起的细胞损伤。我们的数据补充了缺血预处理的神经保护机制的知识,并为支持其临床应用提供了新的证据。另一方面,DcR2可能会干扰DRs相关的死亡诱导信号复合物形成(DISC),从而进一步抑制capase-8激活。此外,我们还发现缺血预处理通过调节DcR2水平激活了IPC诱导的Akt磷酸化。因此,缺血预处理可以上调诱饵受体,通过抑制TRAIL诱导的细胞凋亡和搅动PI3K / Akt途径,保护细胞免受氧葡萄糖剥夺引起的细胞损伤。我们的数据补充了缺血预处理的神经保护机制的知识,并提供了支持其临床应用的新证据。另一方面,DcR2可能会干扰DRs相关的死亡诱导信号复合物形成(DISC),从而进一步抑制capase-8激活。此外,我们还发现缺血预处理通过调节DcR2水平激活了IPC诱导的Akt磷酸化。因此,缺血预处理可以上调诱饵受体,通过抑制TRAIL诱导的细胞凋亡和搅动PI3K / Akt途径,保护细胞免受氧葡萄糖剥夺引起的细胞损伤。我们的数据补充了缺血预处理的神经保护机制的知识,并为支持其临床应用提供了新的证据。我们还发现缺血预处理通过调节DcR2水平激活了IPC诱导的Akt磷酸化。因此,缺血预处理可以上调诱饵受体,通过抑制TRAIL诱导的细胞凋亡和搅动PI3K / Akt途径,保护细胞免受氧葡萄糖剥夺引起的细胞损伤。我们的数据补充了缺血预处理的神经保护机制的知识,并为支持其临床应用提供了新的证据。我们还发现缺血预处理通过调节DcR2水平激活了IPC诱导的Akt磷酸化。因此,缺血预处理可上调诱饵受体,通过抑制TRAIL诱导的细胞凋亡和搅动PI3K / Akt途径,保护细胞免受氧葡萄糖剥夺引起的细胞损伤。我们的数据补充了缺血预处理的神经保护机制的知识,并提供了支持其临床应用的新证据。

更新日期:2020-06-22
down
wechat
bug