当前位置: X-MOL 学术Food Eng. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Water and Pathogenic Viruses Inactivation—Food Engineering Perspectives
Food Engineering Reviews ( IF 5.3 ) Pub Date : 2020-06-20 , DOI: 10.1007/s12393-020-09234-z
Yrjö H. Roos

Water is an essential component of food structures and biological materials. The importance of water as a parameter affecting virion stability and inactivation has been recognized across disciplinary areas. The large number of virus species, differences in spreading, likelihood of foodborne infections, unknown infective doses, and difficulties of infective virus quantification are often limiting experimental approaches to establish accurate data required for detailed understanding of virions’ stability and inactivation kinetics in various foods. Furthermore, non-foodborne viruses, as shown by the SARS-CoV-2 (Covid-19) pandemic, may spread within the food chain. Traditional food engineering benefits from kinetic data on effects of relative humidity (RH) and temperature on virion inactivation. The stability of enteric viruses, human norovirus (HuNoV), and hepatitis A (HAV) virions in food materials and their resistance against inactivation in traditional food processing and preservation is well recognized. It appears that temperature-dependence of virus inactivation is less affected by virus strains than differences in temperature and RH sensitivity of individual virus species. Pathogenic viruses are stable at low temperatures typical of food storage conditions. A significant change in activation energy above typical protein denaturation temperatures suggests a rapid inactivation of virions. Furthermore, virus inactivation mechanisms seem to vary according to temperature. Although little is known on the effects of water on virions’ resistance during food processing and storage, dehydration, low RH conditions, and freezing stabilize virions. Enveloped virions tend to have a high stability at low RH, but low temperature and high RH may also stabilize such virions on metal and other surfaces for several days. Food engineering has contributed to significant developments in stabilization of nutrients, flavors, and sensitive components in food materials which provides a knowledge base for development of technologies to inactivate virions in foods and environment. Novel food processing, particularly high pressure processing (HPP) and cold plasma technologies, seem to provide efficient means for virion inactivation and food quality retention prior to packaging or food preservation by traditional technologies.



中文翻译:

水和致病病毒的灭活-食品工程学的观点

水是食物结构和生物材料的重要组成部分。跨学科领域已经认识到水作为影响病毒体稳定性和灭活的参数的重要性。大量的病毒种类,传播差异,食源性感染的可能性,未知的感染剂量以及感染性病毒量化的困难,常常限制了建立精确数据所需的实验方法,这些数据对于详细了解各种食物中的病毒体稳定性和灭活动力学是必需的。此外,如SARS-CoV-2(Covid-19)大流行所示,非食源性病毒可能会在食物链中传播。传统食品工程得益于相对湿度(RH)和温度对病毒体灭活的动力学数据。肠病毒的稳定性,食品中的人类诺如病毒(HuNoV)和甲型肝炎(HAV)病毒体及其在传统食品加工和保存中对灭活的抵抗力已得到公认。似乎病毒灭活的温度依赖性受病毒株的影响要小于各个病毒种类的温度和相对湿度敏感性的差异。病原性病毒在典型的食品存储条件下的低温下稳定。高于典型蛋白质变性温度的活化能发生显着变化,表明病毒粒子快速失活。此外,病毒的失活机制似乎随温度而变化。尽管对水在食品加工和存储过程中对病毒体抗性的影响知之甚少,但脱水,低RH条件和冷冻稳定了病毒体。包封的病毒体倾向于在低RH下具有较高的稳定性,但是低温和高RH也可以使这种病毒体在金属和其他表面上稳定几天。食品工程促进了食品原料中营养,风味和敏感成分的稳定化,为食品和环境中的病毒粒子灭活技术的开发提供了知识库。新型食品加工,尤其是高压加工(HPP)和冷等离子体技术,似乎为通过传统技术进行包装或食品保鲜之前的病毒体灭活和食品质量保持提供了有效的手段。食品工程促进了食品原料中营养,风味和敏感成分的稳定化,为食品和环境中病毒粒子的灭活技术的开发提供了知识库。新型食品加工,尤其是高压加工(HPP)和冷等离子体技术,似乎为通过传统技术进行包装或食品保鲜之前的病毒体灭活和食品质量保持提供了有效的手段。食品工程促进了食品原料中营养,风味和敏感成分的稳定化,为食品和环境中的病毒粒子灭活技术的开发提供了知识库。新颖的食品加工,特别是高压加工(HPP)和冷等离子体技术,似乎为通过传统技术进行包装或食品保存之前的病毒体灭活和食品质量保持提供了有效的手段。

更新日期:2020-06-22
down
wechat
bug