当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ni or FeO nanocrystal-integrated hollow (solid) N-doped carbon nanospheres: preparation, characterization and electrochemical properties.
Nanoscale ( IF 5.8 ) Pub Date : 2020-06-19 , DOI: 10.1039/d0nr03019h
Yucang Liang 1 , Jonathan David Oettinger 1 , Peng Zhang 2 , Bin Xu 2
Affiliation  

In this paper, phase-pure monodisperse NiO nanocrystals were prepared in a temperature-dependent manner via a thermal decomposition approach, showing sphere-like shapes and snowflake-like NiO arrays. Such hydrophobic NiO nanocrystals were converted into hydrophilic nickel oxide-sodium oleate-Pluronic P123 (NiO-SO-P123) micelles in aqueous solution. Phenolic resin (PR) formed in situ was successfully deposited on the hydrophilic area of the NiO-SO-P123 micelles via a heterogeneous nucleation mechanism to form NiO-phenolic resin nanospheres (NiO-PRNSs) with uniform particle size. By adjusting the size and amount of NiO nanocrystals used, the diameter of the obtained NiO-PRNSs can be effectively controlled from 185 to 103 nm, and a narrow size distribution is seen, revealing the effects of the NiO nanocrystals on the reconstructed NiO-integrated micellar size. Meanwhile, the morphology (ring buoy, semi-bowl, sphere) depends upon the initial amount of NiO. The carbonization of NiO-PRNSs produced Ni(0)-integrated hollow N-doped carbon nanospheres (Ni(0)-HNCNSs), which involved the conversion of NiO to Ni(0) and the contraction of particle size, and the size and distribution was affected by the starting amount of NiO. However, upon using monodisperse and polyhedral FeO nanocrystals, the obtained FeO-free/-incompletely-filled/-fully-filled core–shell structured Fe-PRNSs showed relatively uniform particle size, except for when multiple FeO cores formed large FeO-PR nanospheres after starting with the same initial FeO size. The carbonized FeO-HNCNSs still preserved a pomegranate-like core–shell structure with uniform size and there was no change in the size of the FeO nanocrystals. Moreover, high-loaded Ni(0)-integrated hollow or solid N-doped carbon microspheres or flakes can be synthesized via a one-pot method, but with a broad size range, showing highly uniform Ni distribution with a Ni size as small as 8.5 nm. Note that Ni(0)- and FeO-HNCNSs were prepared for the first time according to our knowledge. Finally, low-loaded Ni- and FeO-HNCNSs with uniform morphology and size were chosen as representatives to investigate their electrochemical properties for lithium-ion batteries (LIBs), showing excellent lithium storage properties and superior reversibility. This study provides a potential strategy for controlling the sizes and morphologies of metal-integrated carbon materials to obtain adjustable electrochemical properties.

中文翻译:

Ni或FeO纳米晶集成的中空(固态)N掺杂碳纳米球:制备,表征和电化学性能。

在本文中,通过热分解方法以温度相关的方式制备了纯相单分散的NiO纳米晶体,显示出球形的形状和雪花状的NiO阵列。将该疏水性NiO纳米晶体在水溶液中转化为亲水性氧化镍-油酸钠-Pluronic P123(NiO-SO-P123)胶束。形成酚醛树脂(PR)在原位被成功沉积在的NiO-SO-P123胶束的亲水区域通过异相成核机制,以形成粒径均匀的NiO-酚醛树脂纳米球(NiO-PRNSs)。通过调节NiO纳米晶的尺寸和数量,可以有效控制NiO-PRNSs的直径从185nm到103nm,并且观察到窄的尺寸分布,揭示了NiO纳米晶对重建的NiO-集成体的影响。胶束大小。同时,形态(环形浮标,半碗形,球形)取决于NiO的初始量。NiO-PRNSs的碳化产生了Ni(0)集成的中空N掺杂碳纳米球(Ni(0)-HNCNSs),其中涉及NiO向Ni(0)的转化以及粒径的收缩,尺寸和分布受NiO起始量的影响。但是,使用单分散和多面FeO纳米晶体时,得到的无FeO /不完全填充/完全填充的核-壳结构Fe-PRNSs的粒径相对均匀,除了当多个FeO核以相同的初始FeO尺寸开始形成大的FeO-PR纳米球时。碳化的FeO-HNCNSs仍然保留着石榴一样的核壳结构,具有均匀的大小,并且FeO纳米晶体的大小没有变化。此外,可以合成高负载的集成Ni(0)的空心或固态N掺杂碳微球或薄片 碳化的FeO-HNCNSs仍然保留着石榴一样的核壳结构,具有均匀的大小,并且FeO纳米晶体的大小没有变化。此外,可以合成高负载的集成Ni(0)的空心或固态N掺杂碳微球或薄片 碳化的FeO-HNCNSs仍然保留着石榴一样的核壳结构,具有均匀的大小,并且FeO纳米晶体的大小没有变化。此外,可以合成高负载的集成Ni(0)的空心或固态N掺杂碳微球或薄片通过一锅法,但是具有宽的尺寸范围,显示出高度均匀的Ni分布,Ni尺寸小至8.5nm。请注意,根据我们的知识,首次制备了Ni(0)-和FeO-HNCNS。最后,选择形态和大小均一的低负荷Ni-和FeO-HNCNSs作为代表,研究它们对锂离子电池(LIB)的电化学性能,显示出优异的锂存储性能和优异的可逆性。这项研究提供了一种潜在的策略,用于控制金属集成碳材料的尺寸和形态以获得可调节的电化学性能。
更新日期:2020-07-23
down
wechat
bug