当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An electrochemical biosensor exploiting binding-induced changes in electron transfer of electrode-attached DNA origami to detect hundred nanometer-scale targets.
Nanoscale ( IF 5.8 ) Pub Date : 2020-06-18 , DOI: 10.1039/d0nr00952k
Netzahualcóyotl Arroyo-Currás 1 , Muaz Sadeia , Alexander K Ng , Yekaterina Fyodorova , Natalie Williams , Tammy Afif , Chao-Min Huang , Nathan Ogden , Roberto C Andresen Eguiluz , Hai-Jun Su , Carlos E Castro , Kevin W Plaxco , Philip S Lukeman
Affiliation  

The specific detection in clinical samples of analytes with dimensions in the tens to hundreds of nanometers, such as viruses and large proteins, would improve disease diagnosis. Detection of these “mesoscale” analytes (as opposed to their nanoscale components), however, is challenging as it requires the simultaneous binding of multiple recognition sites often spaced over tens of nanometers. In response, we have adapted DNA origami, with its unparalleled customizability to precisely display multiple target-binding sites over the relevant length scale, to an electrochemical biosensor platform. Our proof-of-concept employs triangular origami covalently attached to a gold electrode and functionalized with redox reporters. Electrochemical interrogation of this platform successfully monitors mesoscale, target-binding-induced changes in electron transfer in a manner consistent with coarse-grained molecular dynamics simulations. Our approach enables the specific detection of analytes displaying recognition sites that are separated by ∼40 nm, a spacing significantly greater than that achieved in similar sensor architectures employing either antibodies or aptamers.

中文翻译:

一种电化学生物传感器,利用结合诱导的电极连接的DNA折纸的电子传递变化来检测数百个纳米级目标。

在临床样品中对数十到数百纳米尺寸的分析物(例如病毒和大蛋白)进行特异性检测将改善疾病诊断。然而,检测这些“中尺度”分析物(与其纳米级成分相对)是一项挑战,因为它需要同时结合通常间隔数十纳米的多个识别位点。作为响应,我们采用了DNA折纸,以其无与伦比的可定制性在电化学生物传感器平台上精确显示了相关长度范围内的多个目标结合位点。我们的概念验证采用了与金电极共价连接的三角形折纸,并通过氧化还原报告分子进行了功能化。该平台的电化学查询成功监控了中尺度,靶结合诱导的电子转移变化,其方式与粗粒分子动力学模拟一致。我们的方法能够特异性检测显示识别位点的被分析物,这些识别位点相距约40 nm,其间距明显大于采用抗体或适体的类似传感器架构所实现的间距。
更新日期:2020-07-09
down
wechat
bug