当前位置: X-MOL 学术Adv. Aerodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of aspect ratio and inclination angle on aerodynamic loads of a flat plate
Advances in Aerodynamics ( IF 2.9 ) Pub Date : 2020-06-19 , DOI: 10.1186/s42774-020-00038-7
Mehrdad Shademan , Arash Naghib-Lahouti

Large Eddy Simulations are carried out to analyze flow past flat plate in different configurations and inclinations. A thin flat plate is considered at three inclination angles (α = 30°, 60° and 90°) and three aspect ratios (AR = 0.5, 2 and 5). The Reynolds number based on the free stream velocity and chord length of the plate at different inclination angles varies between 75,000 to 150,000. An increase in the inclination angle while the aspect ratio (span to chord) is constant results in higher drag and lower lift on the plate. Increasing the aspect ratio at a constant inclination angle increases the mean aerodynamic loading except for the α = 30° and AR = 0.5 case where the mean forces are larger than the other aspect ratios for this specific inclination angle. The small aspect ratio suppresses and blocks the separation of the flow from the top and bottom edges causing larger aerodynamic forces relative to AR = 2, 5. Visualization of the flow structures shows the tip vortices have a significant role in controlling the shedding vortices from the top and bottom edges. At α = 30° and AR = 0.5, the two tip vortcies control and suppress the flow separation from the top and bottom edges. A stable wake was found for this case with no fluctuation. As the aspect ratio increases, the influence of the tip vortices on flow separation from the top and bottom edges reduces. As a result, larger fluctuations were found for cases with higher aspect ratios.

中文翻译:

长宽比和倾斜角度对平板空气动力载荷的影响

进行了大型涡流模拟,以分析经过不同配置和倾斜度的平板的流动。薄的平板被认为具有三个倾斜角(α= 30°,60°和90°)和三个纵横比(AR = 0.5、2和5)。基于自由流速度和板在不同倾斜角度下的弦长的雷诺数在75,000到150,000之间变化。当纵横比(跨度和弦)不变时,倾斜角度的增加会导致板上的更高阻力和更低升力。以恒定的倾斜角增加纵横比会增加平均空气动力学负荷,但α= 30°和AR = 0.5的情况除外,在这种情况下,平均力大于该特定倾斜角的其他纵横比。较小的纵横比抑制并阻止气流与顶部和底部边缘的分离,从而导致相对于AR = 2、5产生更大的空气动力。流动结构的可视化显示,尖端涡旋在控制涡流从顶部涡旋中起着重要作用。顶部和底部边缘。在α= 30°和AR = 0.5时,两个尖端弯曲控制并抑制了与顶部和底部边缘的流动分离。在这种情况下,发现了稳定的唤醒,没有波动。随着长宽比的增加,尖端涡流对从顶部和底部边缘分离流动的影响减小。结果,对于高纵横比的情况发现较大的波动。流动结构的可视化显示,尖端涡旋在控制顶部和底部边缘的脱落涡旋中具有重要作用。在α= 30°和AR = 0.5时,两个尖端弯曲控制并抑制了与顶部和底部边缘的流动分离。在这种情况下,找到了稳定的唤醒,没有波动。随着长宽比的增加,尖端涡流对从顶部和底部边缘分离流动的影响减小。结果,对于高纵横比的情况发现较大的波动。流动结构的可视化显示,尖端涡旋在控制顶部和底部边缘的脱落涡旋中具有重要作用。在α= 30°和AR = 0.5时,两个尖端弯曲控制并抑制了与顶部和底部边缘的流动分离。在这种情况下,找到了稳定的唤醒,没有波动。随着长宽比的增加,尖端涡流对从顶部和底部边缘分离流动的影响减小。结果,对于高纵横比的情况发现较大的波动。尖端涡流对从顶部和底部边缘分离流动的影响减小了。结果,对于高纵横比的情况发现较大的波动。尖端涡流对从顶部和底部边缘分离流动的影响减小。结果,对于高纵横比的情况发现较大的波动。
更新日期:2020-06-19
down
wechat
bug