当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Investigations of a Fluidized Bed Biomass Gasifier Coupling Detailed Tar Generation and Conversion Kinetics with Particle-Scale Hydrodynamics
Energy & Fuels ( IF 5.2 ) Pub Date : 2020-06-18 , DOI: 10.1021/acs.energyfuels.0c01238
Yupeng Du 1, 2, 3 , Haitao Liu 2 , Wanzhong Ren 1
Affiliation  

Biomass tar as a byproduct during the gasification process can lead to many problems, such as condensation and subsequent plugging downstream. However, the knowledge of the correlations between the tar formation and conversion and the gas–solid hydrodynamics in fluidized bed gasifiers (FBGs) is still limited compared to other aspects of biomass gasification. In this study, a three-dimensional comprehensive model that simultaneously coupled the detailed tar kinetics and the homo- and heterogeneous kinetics with the multi-phase particle-in-cell hydrodynamics was constructed for a biomass FBG. Numerical predictions were in very good agreement with experimental data. The influences of the oxygen concentration in the gasifying agent and the biomass particle size distributions on the gasification process were investigated using the comprehensive model. Numerical findings indicated that a high oxygen concentration of the gasifying agent reduces the nitrogen dilute effects and increases the gasification temperature, giving rise to a low tar yield and high gasification efficiency. A small particle size enhances the releasing and diffusing rates of volatiles from biomass particles, resulting in a low tar yield and high gas yield and gasification efficiency. It is believed that the comprehensive model can assist to explore the tar formation and conversion behaviors on the particle scale for the biomass gasification process.

中文翻译:

流化床生物质气化炉耦合详细焦油生成和转化动力学与颗粒水动力的数值研究

气化过程中副产的生物质焦油可能导致许多问题,例如冷凝和下游堵塞。但是,与生物质气化的其他方面相比,流化床气化炉(FBG)中焦油的形成和转化与气固流体动力学之间的相关性知识仍然有限。在这项研究中,为生物质FBG构建了一个三维综合模型,该模型同时将详细的焦油动力学,同质和异质动力学与多相胞中流体动力学相结合。数值预测与实验数据非常吻合。利用综合模型研究了气化剂中氧气浓度和生物质粒径分布对气化过程的影响。数值结果表明,气化剂的高氧浓度降低了氮的稀释作用并提高了气化温度,导致焦油收率低和气化效率高。小粒径提高了生物质颗粒中挥发物的释放和扩散速率,导致焦油收率低,气体收率和气化效率高。据信,该综合模型可以帮助探索焦油的形成和转化行为,在颗粒尺度上用于生物质气化过程。小粒径可提高生物质颗粒中挥发物的释放和扩散速率,从而导致焦油收率低,气体收率和气化效率高。据信,该综合模型可以帮助探索焦油的形成和转化行为,在颗粒尺度上用于生物质气化过程。小粒径提高了生物质颗粒中挥发物的释放和扩散速率,导致焦油收率低,气体收率和气化效率高。据信,该综合模型可以帮助探索焦油的形成和转化行为,在颗粒尺度上用于生物质气化过程。
更新日期:2020-07-16
down
wechat
bug