当前位置: X-MOL 学术Thin Solid Films › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural and functional properties of Zn(Ge,Sn)N2 thin films deposited by reactive sputtering
Thin Solid Films ( IF 2.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.tsf.2020.138192
Nicole Beddelem , Stéphanie Bruyère , Franck Cleymand , Sébastien Diliberto , Christophe Longeaud , Sylvain le Gall , Roselyne Templier , Patrice Miska , Bérangère Hyot

Abstract Semiconductor alloys ZnSnxGe1-xN2 have theoretical crystal structure and electronic structure similar to that of InGaN alloys. These promises of direct and tunable band gaps are very attractive to unlock a suite of functionality for these nitride semiconductors, namely for the use in long wavelength light emitters and light absorbers for solar cells. We report here a structural, electrical and optical investigation of sputtered ZnSnxGe1-xN2 films for 0 ≤ x ≤ 1 by gradually substituting germanium with tin. Compared to InGaN alloys which suffer from a miscibility gap and exhibit phase segregation beyond ~20% In, ZnSnxGe1-xN2 form advantageously a continuous alloy for 0 ≤ x ≤ 1. Its adjustable lattice parameter a (from 3.22 A to 3.41 A) according to Vegard's law as well as the linear variation of the vibration modes by Fourier transform infrared spectroscopy indicate that the ZnSnxGe1-xN2 alloying is achievable without phase separation. The single chemical environment measured by Mossbauer spectroscopy for Sn4+ ions, whatever Sn content in ZnSnxGe1-xN2, confirms the continuous nature of alloying. Samples exhibit semiconducting properties, including optical band gaps and electronic behaviors with temperature. The experimental observations show that the resistivity in ZnSnxGe1-xN2 alloys can cover several orders of magnitude from a “quasi-metallic” (for ZnSnN2) to a “quasi-insulating” (for ZnGeN2) behavior and that the band gap is tunable from 2.1 eV to 3.04 eV with a nearly linear dependence on the composition. Thus, ZnSnxGe1-xN2 materials offer a solution for bandgap tunability in nitride semiconductors, and may enable enhanced functionality such as efficient green and red light emitters and light absorbers for photosynthetic devices.

中文翻译:

反应溅射沉积的 Zn(Ge,Sn)N2 薄膜的结构和功能特性

摘要 半导体合金ZnSnxGe1-xN2具有与InGaN合金相似的理论晶体结构和电子结构。这些直接和可调带隙的承诺对于解锁这些氮化物半导体的一系列功能非常有吸引力,即用于太阳能电池的长波长光发射器和光吸收器。我们在这里报告了通过逐渐用锡取代锗,对 0 ≤ x ≤ 1 的溅射 ZnSnxGe1-xN2 薄膜的结构、电学和光学研究。与具有混溶性间隙并表现出超过~20% In 的相分离的 InGaN 合金相比,ZnSnxGe1-xN2 有利地形成 0 ≤ x ≤ 1 的连续合金。根据素食主义者 s 定律以及傅里叶变换红外光谱的振动模式的线性变化表明 ZnSnxGe1-xN2 合金化是可以实现的,而不会发生相分离。无论 ZnSnxGe1-xN2 中的 Sn 含量如何,穆斯堡尔光谱测量的 Sn4+ 离子的单一化学环境证实了合金化的连续性。样品表现出半导体特性,包括光学带隙和随温度变化的电子行为。实验观察表明,ZnSnxGe1-xN2 合金的电阻率可以涵盖从“准金属”(对于 ZnSnN2)到“准绝缘”(对于 ZnGeN2)行为的几个数量级,并且带隙可从 2.1 调节eV 至 3.04 eV,与组成几乎呈线性相关。因此,
更新日期:2020-09-01
down
wechat
bug