当前位置: X-MOL 学术Int. J. Fract. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stress concentration and instabilities in the atomistic process of brittle failure initiation
International Journal of Fracture ( IF 2.2 ) Pub Date : 2020-06-18 , DOI: 10.1007/s10704-020-00459-x
Sabri Souguir , Laurent Brochard , Karam Sab

A major challenge in the macroscopic modeling of brittle failure initiation is to reconcile stress-driven failure in absence of stress concentration and energy-driven failure under high stress concentration (crack). In this paper, we perform athermal molecular simulations to investigate the underlying physics behind stress- to energy-driven failures. In the athermal limit, the evolution of an atomic system is deterministic and is obtained by energy minimization. Failure is expected when the system suddenly bifurcates to a broken configuration which can be formally evaluated as an atomic instability characterized by a negative eigenvalue of the Hessian matrix. We applied this methodology to a 2D toy model and to pristine graphene. Both stress- and energy-driven failures are triggered by an instability at the atomic scale, but the two types of failure differ widely regarding the mechanisms of instability (eigenvectors) and their multiplicity (degeneracy). With respect to existing macroscopic theories of failure initiation, these results raise some issues. In particular, one should distinguish the initiation mechanisms and the physical cracking occurring after initiation, and the spatial extent of the initiation mechanism should depend on stress concentration with a minimum extent given by the ratio between toughness and strength. From an atomic scale perspective, a strain-based stability formulation seems the most appropriate. Finally, we show that the degeneracy of the modes of failure explains the size-scaling of strength and toughness at finite temperature.

中文翻译:

脆性破坏起始原子过程中的应力集中和不稳定性

脆性破坏起始宏观建模的一个主要挑战是协调没有应力集中的应力驱动破坏和高应力集中(裂纹)下的能量驱动破坏。在本文中,我们进行了非热分子模拟,以研究应力驱动故障到能量驱动故障背后的基本物理原理。在无热极限下,原子系统的演化是确定性的,是通过能量最小化获得的。当系统突然分叉为破坏配置时,预计会出现故障,该配置可以正式评估为原子不稳定性,其特征是 Hessian 矩阵的负特征值。我们将此方法应用于 2D 玩具模型和原始石墨烯。压力和能量驱动的故障都是由原子尺度的不稳定性触发的,但是这两种类型的故障在不稳定性(特征向量)及其多样性(简并性)的机制方面存在很大差异。相对于现有的失效引发宏观理论,这些结果提出了一些问题。特别是,应区分起爆机制和起爆后发生的物理开裂,起爆机制的空间范围应取决于应力集中,最小程度由韧性和强度之比给出。从原子尺度的角度来看,基于应变的稳定性公式似乎是最合适的。最后,我们证明了失效模式的简并性解释了有限温度下强度和韧性的尺寸缩放。相对于现有的失效引发宏观理论,这些结果提出了一些问题。特别是,应区分起爆机制和起爆后发生的物理开裂,起爆机制的空间范围应取决于应力集中,最小程度由韧性和强度之比给出。从原子尺度的角度来看,基于应变的稳定性公式似乎是最合适的。最后,我们证明了失效模式的简并性解释了有限温度下强度和韧性的尺寸缩放。相对于现有的失效引发宏观理论,这些结果提出了一些问题。特别是,应区分起爆机制和起爆后发生的物理开裂,起爆机制的空间范围应取决于应力集中,最小程度由韧性和强度之比给出。从原子尺度的角度来看,基于应变的稳定性公式似乎是最合适的。最后,我们证明了失效模式的简并性解释了有限温度下强度和韧性的尺寸缩放。引发机制的空间范围应取决于应力集中,最小范围由韧性和强度之间的比率给出。从原子尺度的角度来看,基于应变的稳定性公式似乎是最合适的。最后,我们证明了失效模式的简并性解释了有限温度下强度和韧性的尺寸缩放。引发机制的空间范围应取决于应力集中,最小范围由韧性和强度之间的比率给出。从原子尺度的角度来看,基于应变的稳定性公式似乎是最合适的。最后,我们证明了失效模式的简并性解释了有限温度下强度和韧性的尺寸缩放。
更新日期:2020-06-18
down
wechat
bug