当前位置: X-MOL 学术Graphs Comb. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Circular Zero-Sum r -Flows of Regular Graphs
Graphs and Combinatorics ( IF 0.6 ) Pub Date : 2020-04-11 , DOI: 10.1007/s00373-020-02169-6
Saieed Akbari , Amir Hossein Ghodrati , Mohammad Ali Nematollahi

A circular zero-sum flow for a graph G is a function \(f:E(G) \rightarrow {\mathbb {R}}{\setminus }\{0\}\) such that for every vertex v, \(\sum _{e\in E_v}f(e)=0\), where \(E_v\) is the set of all edges incident with v. If for each edge e, \(1\le |f(e)| \le r-1\), where \(r\ge 2\) is a real number, then f is called a circular zero-sum r-flow. Also, if r is a positive integer and for each edge e, f(e) is an integer, then f is called a zero-sum r-flow. If G has a circular zero-sum flow, then the minimum \(r\ge 2\) for which G has a circular zero-sum r-flow is called the circular zero-sum flow number of G and is denoted by \(\Phi _c(G)\). Also, the minimum integer \(r\ge 2\) for which G has a zero-sum r-flow is called the flow number for G and is denoted by \(\Phi (G)\). In this paper, we investigate circular zero-sum r-flows of regular graphs. In particular, we show that if G is k-regular with m edges, then \(\Phi _c(G)=2\) for even k and even m, \(\Phi _c(G)=1+\frac{k+2}{k-2}\) for even k and odd m, and \(\Phi _c(G)\le 1+(\frac{k+1}{k-1})^2\) for odd k. It was proved that for every k-regular graph G with \(k\ge 3\), \(\Phi (G)\le 5\). Here, using circular zero-sum flows, we present a new proof of this result when \(k \ne 5\). Finally, we prove that a graph G has a circular zero-sum flow f such that for every edge e, \(l(e) \le f(e) \le u(e)\), if and only if for every partition of V(G) into three subsets ABC,

$$\begin{aligned} l(A,C)+2l(A) \le u(B,C)+2u(B), \end{aligned}$$

where l(AC) is the sum of values of l on the edges between AC, and l(A) is the sum of values of l on the edges with both ends in A (the definitions of u(BC) and u(B) are analogous).



中文翻译:

正则图的圆零和r-流

G的圆零和流是一个函数\(f:E(G)\ rightarrow {\ mathbb {R}} {\ setminus} \ {0 \} \),因此对于每个顶点v\( \ sum _ {e \ in E_v} f(e)= 0 \),其中\(E_v \)是与v入射的所有边的集合。如果对于每个边缘ë\(1 \文件| F(e)中| \文件的r-1 \) ,其中\(R \ GE 2 \)是实数,则˚F称为圆形零和- [R -流。同样,如果r是一个正整数,并且对于每个边efe)是一个整数,则f称为零和r流。如果ģ具有圆形零和流量,则最低\(R \ GE 2 \)为其ģ具有圆形零和- [R -flow被称为的圆形零和流号码ģ并且由表示\( \ Phi _c(G)\)。此外,最小整数\(R \ GE 2 \)为其ģ具有零和- [R -flow被称为用于流数ģ并且被表示为\(\披(G)\) 。在本文中,我们研究了正则图的圆零和r流。特别地,我们表明如果Gk-具有m个边的规则数,然后\(\ Phi _c(G)= 2 \)对于偶数k和偶数m\(\ Phi _c(G)= 1 + \ frac {k + 2} {k-2} \ )表示偶数k和奇数m,而\(\ Phi _c(G)\ le 1 +(\ frac {k + 1} {k-1})^ 2 \)表示奇数k。据证明,对于每ķ -regular图ģ\(K \ GE 3 \) \(\披(G)\文件5 \) 。在这里,使用循环零和流,当\(k \ ne 5 \)时,我们给出了这个结果的新证明。最后,我们证明图G的循环零和流量为f这样,对于且仅当VG)分为三个子集A,  B,  C时,对于每个边e\(l(e)\ le f(e)\ le u(e)\)

$$ \ begin {aligned} l(A,C)+ 2l(A)\ le u(B,C)+ 2u(B),\ end {aligned} $$

其中lA,  C)是A,  C之间的边缘上l的值的和,lA)是两端在A中的边缘上的l的值的和(uB,  C)和uB)类似。

更新日期:2020-06-19
down
wechat
bug