当前位置: X-MOL 学术Bound. Value Probl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishing
Boundary Value Problems ( IF 1.0 ) Pub Date : 2020-06-18 , DOI: 10.1186/s13661-020-01408-2
Jin-Long Zhang , Da-Bin Wang

This paper deals with the following Kirchhoff–Schrödinger–Poisson system: $$ \textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\phi u=K(x)f(u)&\text{in } \mathbb{R}^{3}, \\ -\Delta \phi =u^{2}&\text{in } \mathbb{R}^{3}, \end{cases} $$ where a, b are positive constants, $K(x)$, $V(x)$ are positive continuous functions vanishing at infinity, and $f(u)$ is a continuous function. Using the Nehari manifold and variational methods, we prove that this problem has a least energy nodal solution. Furthermore, if f is an odd function, then we obtain that the equation has infinitely many nontrivial solutions.

中文翻译:

潜在消失的Kirchhoff–Schrödinger–Poisson系统的最小能量节点解的存在

本文处理以下Kirchhoff–Schrödinger–Poisson系统:$$ \ textstyle \ begin {cases}-(a + b \ int _ {\ mathbb {R} ^ {3}} \ vert \ nabla u \ vert ^ { 2} \,dx)\ Delta u + V(x)u + \ phi u = K(x)f(u)&\ text {in} \ mathbb {R} ^ {3},\\-\ Delta \ phi = u ^ {2}&\ text {in} \ mathbb {R} ^ {3},\ end {cases} $$,其中a,b为正常数,$ K(x)$,$ V(x)$是无穷大的正连续函数,而$ f(u)$是连续函数。使用Nehari流形和变分方法,我们证明该问题具有最小能量节点解。此外,如果f是一个奇数函数,则我们得出该方程具有无限多个非平凡解。
更新日期:2020-06-18
down
wechat
bug