当前位置: X-MOL 学术Proc. Inst. Mech. Eng. E J. Process Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional simulation of performance in through-mask electrochemical micromachining
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ( IF 2.3 ) Pub Date : 2020-06-18 , DOI: 10.1177/0954408920934550
Te-Hui Tsai 1 , Ming-Yuan Lin 1 , Zhi-Wen Fan 2 , Hung-Lin Lin 3
Affiliation  

Through-mask electrochemical micromachining (TMEMM) is a kind of microfabrication. The major feature of through-mask electrochemical micromachining is that the tool is not limited by the shape, and can be processed in various shapes according to the pattern on the mask. This paper uses the finite element method to create a three-dimensional model to discuss the influence of flow direction, voltage, and electrolyte flow rate on the shape of the through-mask electrochemical micromachining. The simulation results show that processing shape is deeply affected by processing parameters, electrolyte flow rate affects processing temperature distribution, and temperature distribution at the bottom of aperture affects processing depth and flatness during processing, which in turn causes the difference in orifice size and roundness. At the same flow rate, the larger voltage, the larger average radius, flatness, and roundness. At the same voltage, the faster flow rate, the lower average depth, flatness, and average radius. Overall, it has best-processed aperture profile at a flow rate of 0.5 m/s. As a whole, the through-mask electrochemical micromachining is indeed suitable for array microfabrication of various shapes. In this study, experiments were added to verify the simulation results. At a fixed electrolyte flow rate, when the voltage, concentration, and mask aperture are changed, it will have an effect on the overall experimental results. From the experimental results, we know that the electrolyte flow rate and temperature distribution will indeed affect the overall processability.

中文翻译:

穿透掩模电化学微加工性能的三维模拟

通过掩模电化学微加工(TMEMM)是一种微细加工。通过掩模电化学微加工的主要特点是刀具不受形状的限制,可以根据掩模上的图案加工成各种形状。本文采用有限元方法建立三维模型,讨论流向、电压和电解液流速对穿罩电化学微加工形状的影响。仿真结果表明,加工形状受加工参数的影响很大,电解液流量影响加工温度分布,孔径底部的温度分布影响加工过程中的加工深度和平面度,进而导致孔口尺寸和圆度的差异。在相同的流速下,电压越大,平均半径、平面度和圆度越大。在相同电压下,流速越快,平均深度、平整度和平均半径越低。总体而言,它在 0.5 m/s 的流速下具有最佳处理的孔径轮廓。整体而言,通过掩模电化学微加工确实适用于各种形状的阵列微加工。在这项研究中,增加了实验来验证模拟结果。在固定的电解液流速下,当电压、浓度和掩模孔径发生变化时,会对整体实验结果产生影响。从实验结果我们知道电解液的流速和温度分布确实会影响整体加工性能。较低的平均深度、平坦度和平均半径。总体而言,它在 0.5 m/s 的流速下具有最佳处理的孔径轮廓。整体而言,通过掩模电化学微加工确实适用于各种形状的阵列微加工。在这项研究中,增加了实验来验证模拟结果。在固定的电解液流速下,当电压、浓度和掩模孔径发生变化时,会对整体实验结果产生影响。从实验结果,我们知道电解液的流速和温度分布确实会影响整体的可加工性。较低的平均深度、平坦度和平均半径。总体而言,它在 0.5 m/s 的流速下具有最佳处理的孔径轮廓。整体而言,通过掩模电化学微加工确实适用于各种形状的阵列微加工。在这项研究中,增加了实验来验证模拟结果。在固定的电解液流速下,当电压、浓度和掩模孔径发生变化时,会对整体实验结果产生影响。从实验结果我们知道电解液的流速和温度分布确实会影响整体加工性能。通过掩模电化学微加工确实适用于各种形状的阵列微加工。在这项研究中,增加了实验来验证模拟结果。在固定的电解液流速下,当电压、浓度和掩模孔径发生变化时,会对整体实验结果产生影响。从实验结果我们知道电解液的流速和温度分布确实会影响整体加工性能。通过掩模电化学微加工确实适用于各种形状的阵列微加工。在这项研究中,增加了实验来验证模拟结果。在固定的电解液流速下,当电压、浓度和掩模孔径发生变化时,都会对整体实验结果产生影响。从实验结果我们知道电解液的流速和温度分布确实会影响整体加工性能。
更新日期:2020-06-18
down
wechat
bug