当前位置: X-MOL 学术Int. J. Numer. Methods Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Higher‐order‐accurate numerical method for temporal stability simulations of Rayleigh‐Bénard‐Poiseuille flows
International Journal for Numerical Methods in Fluids ( IF 1.7 ) Pub Date : 2020-06-17 , DOI: 10.1002/fld.4877
Md Kamrul Hasan 1 , Andreas Gross 1
Affiliation  

For Rayleigh‐Bénard‐Poiseuille flows, thermal stratification resulting from a wall‐normal temperature gradient together with an opposing gravitational field can lead to buoyancy‐driven instability. Moreover, for sufficiently large Reynolds numbers, viscosity‐driven instability can occur. Two higher‐order‐accurate methods based on the full and linearized Navier‐Stokes equations were developed for investigating the temporal stability of such flows. The new methods employ a spectral discretization in the homogeneous directions. In the wall‐normal direction, the convective and viscous terms are discretized with fifth‐order‐accurate biased and fourth‐order‐accurate central compact finite differences. A fourth‐order‐accurate explicit Runge‐Kutta method is employed for time integration. To validate the methods, the primary instability was investigated for different combinations of the Reynolds and Rayleigh number. The results from these primary stability investigations are consistent with linear stability theory results from the literature with respect to both the onset of the instability and the dependence of the temporal growth rate on the wave angle. For the cases with buoyancy‐driven instability, strong linear growth is observed for a broad range of spanwise wavenumbers. The largest growth rates are obtained for a wave angle of 90°. For the cases with viscosity‐driven instability, the linear growth rates are lower and the first mode to experience nonlinear growth is a higher harmonic with half the wavelength of the fundamental.

中文翻译:

Rayleigh-Bénard-Poiseuille流的时间稳定性模拟的高阶精度数值方法

对于瑞利—贝纳德·​​泊瓦流,由于壁面法向温度梯度和相反的引力场引起的热分层会导致浮力驱动的不稳定。此外,对于足够大的雷诺数,可能会发生粘度驱动的不稳定性。为研究此类流动的时间稳定性,开发了两种基于完整和线性化的Navier-Stokes方程的高阶精度方法。新方法在均匀方向上采用了光谱离散化。在壁法线方向上,对流项和粘性项通过五阶精确偏差和四阶精确中心紧凑有限差分离散化。时间积分采用四阶准确的显式Runge-Kutta方法。为了验证方法,研究了雷诺数和瑞利数的不同组合的主要不稳定性。这些主要稳定性研究的结果与不稳定性的发作以及时间增长率对波角的依赖性两者均与文献中的线性稳定性理论结果一致。对于浮力驱动的不稳定情况,在很大的跨度波数范围内观察到了强烈的线性增长。对于90°的波角,可以获得最大的增长率。对于具有粘度驱动的不稳定性的情况,线性增长率较低,而经历非线性增长的第一个模式是较高的谐波,其基波波长为一半。这些主要稳定性研究的结果与不稳定性的发作以及时间增长率对波角的依赖性两者均与文献中的线性稳定性理论结果一致。对于浮力驱动的不稳定情况,在很大的跨度波数范围内观察到了强烈的线性增长。对于90°的波角,可以获得最大的增长率。对于具有粘度驱动的不稳定性的情况,线性增长率较低,而经历非线性增长的第一个模式是较高的谐波,其基波波长为一半。这些主要稳定性研究的结果与不稳定性的发作以及时间增长率对波角的依赖性两者均与文献中的线性稳定性理论结果一致。对于浮力驱动的不稳定情况,在很大的跨度波数范围内观察到了强烈的线性增长。对于90°的波角,可以获得最大的增长率。对于具有粘度驱动的不稳定性的情况,线性增长率较低,而经历非线性增长的第一个模式是较高的谐波,其基波波长为一半。在很大的跨度波数范围内观察到了强烈的线性增长。对于90°的波角,可以获得最大的增长率。对于具有粘度驱动的不稳定性的情况,线性增长率较低,而经历非线性增长的第一个模式是较高的谐波,其基波波长为一半。在很大的跨度波数范围内观察到了强烈的线性增长。对于90°的波角,可以获得最大的增长率。对于具有粘度驱动的不稳定性的情况,线性增长率较低,而经历非线性增长的第一个模式是较高的谐波,其基波波长为一半。
更新日期:2020-06-17
down
wechat
bug