当前位置: X-MOL 学术J. Biomed. Mater. Res. Part B Appl. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New cross-linkable poly[bis(octafluoropentoxy) phosphazene] biomaterials: Synthesis, surface characterization, bacterial adhesion, and plasma coagulation responses.
Journal of Biomedical Materials Research Part B: Applied Biomaterials ( IF 3.2 ) Pub Date : 2020-06-18 , DOI: 10.1002/jbm.b.34662
Li-Chong Xu 1 , Chen Chen 2 , Jieru Zhu 2 , Meixian Tang 3 , Andy Chen 4 , Harry R Allcock 2 , Christopher A Siedlecki 1, 3
Affiliation  

Biomaterial‐associated microbial infection and thrombosis represent major issues to the success of long‐term use of implantable blood‐contacting medical devices. The development of new poly[bis(octafluoropentoxy) phosphazene (OFP) biomaterials provides new routes for combatting microbial infection and thrombosis. However, the limited mechanical properties of OFP to date render them unsuitable for application in medical devices and inhibit any attempts at subsequent surface topography modification. In this study, we synthesized cross‐linkable OFPs (X‐OFPs) with the different degrees of cross‐linking in an effort to improve the mechanical properties. The results showed that the surface chemistry and surface topography of X‐OFPs do not change significantly, but the surface mechanical stiffness increased after cross‐linking. Atomic force microscopic phase images showed that the polymer phase separation structures changed due to cross‐linking. Experiments with three bacterial strains: Staphylococcal epidermidis, Staphylococcal aureus, and Pseudomonas aeruginosa showed that bacterial adhesion was significantly decreased on the OFP and X‐OFPs for both the pre‐cross‐linked and cross‐linked as compared to polyurethane biomaterials. Furthermore, bacterial adhesions were lower on X‐OFP surfaces than on pre‐cross‐linked materials, suggesting that mechanical stiffness is an important parameter influencing bacterial adhesion. Blood plasma coagulation responses revealed longer coagulation times for OFP and X‐OFP materials than on polyurethanes, indicating that the new cross‐linked OFPs are resistant to plasma coagulation compared to currently used polyurethane biomaterials.

中文翻译:


新型可交联聚[双(八氟戊氧基)磷腈]生物材料:合成、表面表征、细菌粘附和血浆凝固反应。



生物材料相关的微生物感染和血栓形成是植入式血液接触医疗设备长期使用成功的主要问题。新型聚[双(八氟戊氧基)磷腈(OFP)生物材料的开发为对抗微生物感染和血栓形成提供了新途径。然而,迄今为止,OFP 的机械性能有限,使其不适合在医疗设备中应用,并阻碍了后续表面形貌改性的任何尝试。在本研究中,我们合成了具有不同交联程度的可交联 OFP(X-OFP),以提高机械性能。结果表明,X-OFPs的表面化学和表面形貌没有显着变化,但交联后表面机械刚度有所增加。原子力显微相图显示聚合物相分离结构由于交联而发生变化。对三种细菌菌株(表皮葡萄球菌、金黄色葡萄球菌铜绿假单胞菌)的实验表明,与聚氨酯生物材料相比,预交联和交联的 OFP 和 X-OFP 上的细菌粘附均显着降低。此外,X-OFP 表面上的细菌粘附低于预交联材料,这表明机械刚度是影响细菌粘附的重要参数。血浆凝固反应表明,OFP 和 X-OFP 材料的凝固时间比聚氨酯更长,这表明与目前使用的聚氨酯生物材料相比,新型交联 OFP 具有抗血浆凝固性。
更新日期:2020-06-18
down
wechat
bug