当前位置: X-MOL 学术J. Magn. Magn. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spin orbit coupling effects on the non-collinear magnetism of structurally relaxed Fe/Cu (001) thin films: First principles calculations
Journal of Magnetism and Magnetic Materials ( IF 2.7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jmmm.2020.167108
R. Garibay-Alonso , J.L. Ricardo-Chávez , J.L. Rodríguez-López , J.L. Morán-López

Abstract The effect of the spin–orbit coupling interaction and atomic relaxation, on the ground state non-collinear magnetism of deposited Fe thin films, on a Cu (001) surface, is studied by using first principles density functional theory calculations. The total energy values and spin and orbital magnetic local moments are calculated for a Fe film of N = 6 atomic layers deposited on a 12 layer thick Cu film playing the role of substrate. As a first step, we allow the thin film and surface layers to atomically relax. We found important contractions of about 20 % between the first and second, the third and fourth, and firth and sixth Fe layers. Then, we obtain collinear and non-collinear magnetic arrangements which agree with the main experimental resultssatte that show a non-collinear configuration at low temperatures (around 40 K). The magnetic properties of the first four Fe layers are well reproduced. The agreement is better than the results obtained ignoring the spin–orbit coupling and the structure relaxation. Although both calculations predict non-collinear configurations with energy values slightly above that of a collinear ground state. In some cases, the energy differences between two collinear (or non-collinear) solutions with different spin orientation axis is only under the value of one meV. The calculated orbital local moment arrangements are clearly similar to the spin magnetic local moment ones and show a correct dependence on the dimensionality aspects of the system when changing the spin axis quantization direction.

中文翻译:

自旋轨道耦合对结构松弛 Fe/Cu (001) 薄膜非共线磁性的影响:第一性原理计算

摘要 利用第一性原理密度泛函理论计算,研究了自旋轨道耦合相互作用和原子弛豫对 Cu (001) 表面沉积 Fe 薄膜基态非共线磁性的影响。总能量值以及自旋和轨道磁局部矩是针对沉积在 12 层厚 Cu 膜上的 N = 6 原子层的 Fe 膜计算的,该膜充当衬底。作为第一步,我们允许薄膜和表面层原子弛豫。我们发现第一层和第二层、第三层和第四层以及第五层和第六层之间存在约 20% 的重要收缩。然后,我们获得了与主要实验结果一致的共线和非共线磁排列,这些结果显示低温(约 40 K)下的非共线配置。前四个 Fe 层的磁特性得到了很好的再现。该一致性优于忽略自旋轨道耦合和结构松弛所获得的结果。尽管两种计算都预测了能量值略高于共线基态的非共线配置。在某些情况下,具有不同自旋方向轴的两个共线(或非共线)解之间的能量差异仅低于 1 meV 的值。计算出的轨道局部矩排列明显类似于自旋磁局部矩排列,并且在改变自旋轴量化方向时显示出对系统维度方面的正确依赖。该一致性优于忽略自旋轨道耦合和结构松弛所获得的结果。尽管两种计算都预测了能量值略高于共线基态的非共线配置。在某些情况下,具有不同自旋方向轴的两个共线(或非共线)解之间的能量差异仅低于 1 meV 的值。计算出的轨道局部矩排列明显类似于自旋磁局部矩排列,并且在改变自旋轴量化方向时显示出对系统维度方面的正确依赖。该一致性优于忽略自旋轨道耦合和结构松弛所获得的结果。尽管两种计算都预测了能量值略高于共线基态的非共线配置。在某些情况下,具有不同自旋方向轴的两个共线(或非共线)解之间的能量差异仅低于 1 meV 的值。计算出的轨道局部矩排列明显类似于自旋磁局部矩排列,并且在改变自旋轴量化方向时显示出对系统维度方面的正确依赖。具有不同自旋方向轴的两个共线(或非共线)解之间的能量差异仅低于 1 meV 的值。计算出的轨道局部矩排列明显类似于自旋磁局部矩排列,并且在改变自旋轴量化方向时显示出对系统维度方面的正确依赖。具有不同自旋方向轴的两个共线(或非共线)解之间的能量差异仅低于 1 meV 的值。计算出的轨道局部矩排列明显类似于自旋磁局部矩排列,并且在改变自旋轴量化方向时显示出对系统维度方面的正确依赖。
更新日期:2020-11-01
down
wechat
bug