当前位置: X-MOL 学术J. Differ. Equ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Well-posedness theory for electromagnetic obstacle problems
Journal of Differential Equations ( IF 2.4 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jde.2020.05.009
Irwin Yousept

Abstract This paper develops a well-posedness theory for hyperbolic Maxwell obstacle problems generalizing the result by Duvaut and Lions (1976) [5] . Building on the recently developed result by Yousept (2020) [30] , we prove an existence result and study the uniqueness through a local H(curl)-regularity analysis with respect to the constraint set. More precisely, every solution is shown to locally satisfy the Maxwell-Ampere equation (resp. Faraday equation) in the region where no obstacle is applied to the electric field (resp. magnetic field). By this property, along with a structural assumption on the feasible set, we are able to localize the obstacle problem to the underlying constraint regions. In particular, the resulting localized problem does not employ the electric test function (resp. magnetic test function) in the area where the L 2 -regularity of the rotation of the electric field (resp. magnetic field) is not a priori guaranteed. This localization strategy is the main ingredient for our uniqueness proof. After establishing the well-posedness, we consider the case where the electric permittivity is negligibly small in the electric constraint region and investigate the corresponding eddy current obstacle problem. Invoking the localization strategy, we derive an existence result under an L 2 -boundedness assumption for the electric constraint region along with a compatibility assumption on the initial data. The developed theoretical results find applications in electromagnetic shielding.

中文翻译:

电磁障碍问题的适定性理论

摘要 本文针对 Duvaut 和 Lions (1976) [5] 的结果推广了双曲麦克斯韦障碍问题的适定性理论。在 Yousept (2020) [30] 最近开发的结果的基础上,我们证明了一个存在结果,并通过关于约束集的局部 H(curl)-正则性分析来研究唯一性。更准确地说,每个解都在没有障碍物施加到电场(相应的磁场)的区域中局部满足麦克斯韦-安培方程(相应的法拉第方程)。通过这个特性,连同对可行集的结构假设,我们能够将障碍问题定位到潜在的约束区域。特别是,由此产生的局部问题不使用电测试功能(resp。磁场测试函数)在不先验保证电场(或磁场)旋转的 L 2 -规律性的区域中。这种本地化策略是我们唯一性证明的主要成分。在建立适定性后,我们考虑在电约束区域中介电常数很小的情况,并研究相应的涡流障碍问题。调用定位策略,我们在对电约束区域的 L 2 -有界假设以及对初始数据的兼容性假设下推导出存在结果。开发的理论结果在电磁屏蔽中得到了应用。这种本地化策略是我们唯一性证明的主要成分。在建立适定性后,我们考虑在电约束区域中介电常数很小的情况,并研究相应的涡流障碍问题。调用定位策略,我们在对电约束区域的 L 2 -有界假设以及对初始数据的兼容性假设下推导出存在结果。开发的理论结果在电磁屏蔽中得到了应用。这种本地化策略是我们唯一性证明的主要成分。在建立适定性后,我们考虑在电约束区域中介电常数很小的情况,并研究相应的涡流障碍问题。调用定位策略,我们在对电约束区域的 L 2 -有界假设以及对初始数据的兼容性假设下推导出存在结果。开发的理论结果在电磁屏蔽中得到了应用。我们在 L 2 有界假设下推导出存在性结果,对电约束区域以及对初始数据的兼容性假设。开发的理论结果在电磁屏蔽中得到了应用。我们在 L 2 有界假设下推导出存在性结果,对电约束区域以及对初始数据的兼容性假设。开发的理论结果在电磁屏蔽中得到了应用。
更新日期:2020-11-01
down
wechat
bug