当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalytic flow with a coupled finite difference - lattice Boltzmann scheme
Computer Physics Communications ( IF 7.2 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.cpc.2020.107443
Nadiia Kulyk , Daniel Berger , Ana-Sunčana Smith , Jens Harting

Catalysis is one of the key technologies for a sustainable energy future with vast applications in chemical energy storage, efficient chemical conversion and reducing air pollution. Many catalyst devices employ porous or foam-like structures, which leads to a complex macroscopic mass and heat transport. To unravel the detailed dynamics of the reactive gas flow, we present a novel coupled finite differences thermal lattice Boltzmann model (FD-LBM): the thermal LBM is used to solve the heat and mass transport in the gas domain and the finite differences are augmented to solve the heat equation in the solid and across the gas-solid interface for a consistent treatment of the reaction enthalpy. The chemical surface reactions are incorporated in a flexible fashion through flux boundary conditions at the gas-solid interface. We scrutinize the thermal LBM by benchmarking the macroscopic transport in the gas domain as well as enthalpy conservation across the solid-gas interface. We exemplify the applicability of our model by simulating the reactive gas flow trough a microporous material catalysing the water-gas-shift reaction.

中文翻译:

具有耦合有限差分的催化流 - 格子 Boltzmann 方案

催化是可持续能源未来的关键技术之一,在化学储能、高效化学转化和减少空气污染方面有着广泛的应用。许多催化剂装置采用多孔或泡沫状结构,这导致复杂的宏观质量和热传输。为了解开反应气体流动的详细动力学,我们提出了一种新颖的耦合有限差分热晶格玻尔兹曼模型 (FD-LBM):热 LBM 用于解决气体域中的热量和质量传输,并增加了有限差分求解固体和气-固界面上的热方程,以一致地处理反应焓。化学表面反应通过气固界面处的通量边界条件以灵活的方式结合。我们通过对气体域中的宏观传输以及固气界面的焓守恒进行基准测试来仔细检查热 LBM。我们通过模拟通过微孔材料催化水煤气变换反应的反应气流来举例说明我们模型的适用性。
更新日期:2020-11-01
down
wechat
bug