当前位置: X-MOL 学术Comput. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A macroelement stabilization for mixed finite element/finite volume discretizations of multiphase poromechanics
Computational Geosciences ( IF 2.1 ) Pub Date : 2020-06-18 , DOI: 10.1007/s10596-020-09964-3
Julia T. Camargo , Joshua A. White , Ronaldo I. Borja

Strong coupling between geomechanical deformation and multiphase fluid flow appears in a variety of geoscience applications. A common discretization strategy for these problems is a continuous Galerkin finite element scheme for the momentum balance equation and a finite volume scheme for the mass balance equations. When applied within a fully implicit solution strategy, however, this discretization is not intrinsically stable. In the limit of small time steps or low permeabilities, spurious oscillations in the piecewise-constant pressure field, i.e., checkerboarding, may be observed. Further, eigenvalues associated with the spurious modes will control the conditioning of the matrices and can dramatically degrade the convergence rate of iterative linear solvers. Here, we propose a stabilization technique in which the mass balance equations are supplemented with stabilizing flux terms on a macroelement basis. The additional stabilization terms are dependent on a stabilization parameter. We identify an optimal value for this parameter using an analysis of the eigenvalue distribution of the macroelement Schur complement matrix. The resulting method is simple to implement and preserves the underlying sparsity pattern of the original discretization. Another appealing feature of the method is that mass is exactly conserved on macroelements, despite the addition of artificial fluxes. The efficacy of the proposed technique is demonstrated with several numerical examples.



中文翻译:

多相时变力学混合有限元/有限体积离散化的宏观稳定

地质力学变形和多相流体流动之间的强耦合出现在各种地球科学应用中。解决这些问题的常用离散化策略是针对动量平衡方程的连续Galerkin有限元方案和针对质量平衡方程的有限体积方案。但是,当在完全隐式解决方案策略中应用时,此离散化本质上不是稳定的。在较小的时间步长或较低的渗透率的限制下,可以观察到分段恒定压力场中的杂散振荡,即棋盘格。此外,与杂散模式关联的特征值将控制矩阵的条件,并且可能会大大降低迭代线性求解器的收敛速度。这里,我们提出了一种稳定技术,其中在宏观元素​​基础上用稳定通量项补充了质量平衡方程。附加的稳定项取决于稳定参数。我们通过分析宏观元素Schur补矩阵的特征值分布来确定该参数的最佳值。生成的方法易于实现,并保留了原始离散化的底层稀疏模式。该方法的另一个吸引人的特点是,尽管添加了人工通量,但质量仍在宏观元素​​上完全守恒。几个数值示例证明了所提出技术的有效性。我们通过分析宏观元素Schur补矩阵的特征值分布来确定该参数的最佳值。生成的方法易于实现,并保留了原始离散化的底层稀疏模式。该方法的另一个吸引人的特点是,尽管添加了人工通量,但质量仍在宏观元素​​上完全守恒。几个数值示例证明了所提出技术的有效性。我们通过分析宏观元素Schur补矩阵的特征值分布来确定该参数的最佳值。生成的方法易于实现,并保留了原始离散化的底层稀疏模式。该方法的另一个吸引人的特点是,尽管添加了人工通量,但质量仍在宏观元素​​上完全守恒。几个数值示例证明了所提出技术的有效性。尽管增加了人工助焊剂。几个数值示例证明了所提出技术的有效性。尽管增加了人工助焊剂。几个数值示例证明了所提出技术的有效性。

更新日期:2020-06-18
down
wechat
bug