当前位置: X-MOL 学术arXiv.cs.SC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computing Igusa's local zeta function of univariates in deterministic polynomial-time
arXiv - CS - Symbolic Computation Pub Date : 2020-06-16 , DOI: arxiv-2006.08926
Ashish Dwivedi and Nitin Saxena

Igusa's local zeta function $Z_{f,p}(s)$ is the generating function that counts the number of integral roots, $N_{k}(f)$, of $f(\mathbf x) \bmod p^k$, for all $k$. It is a famous result, in analytic number theory, that $Z_{f,p}$ is a rational function in $\mathbb{Q}(p^s)$. We give an elementary proof of this fact for a univariate polynomial $f$. Our proof is constructive as it gives a closed-form expression for the number of roots $N_{k}(f)$. Our proof, when combined with the recent root-counting algorithm of (Dwivedi, Mittal, Saxena, CCC, 2019), yields the first deterministic poly($|f|, \log p$) time algorithm to compute $Z_{f,p}(s)$. Previously, an algorithm was known only in the case when $f$ completely splits over $\mathbb{Q}_p$; it required the rational roots to use the concept of generating function of a tree (Z\'u\~niga-Galindo, J.Int.Seq., 2003).

中文翻译:

在确定性多项式时间内计算 Igusa 的单变量局部 zeta 函数

Igusa 的局部 zeta 函数 $Z_{f,p}(s)$ 是计算 $f(\mathbf x) \bmod p^k 的积分根数 $N_{k}(f)$ 的生成函数$,对于所有 $k$。在解析数论中,有一个著名的结果,即 $Z_{f,p}$ 是 $\mathbb{Q}(p^s)$ 中的有理函数。我们对单变量多项式 $f$ 给出了这个事实的基本证明。我们的证明是建设性的,因为它给出了根数 $N_{k}(f)$ 的封闭形式表达式。我们的证明,结合最近的根计数算法 (Dwivedi, Mittal, Saxena, CCC, 2019),产生第一个确定性 poly($|f|, \log p$) 时间算法来计算 $Z_{f, p}(s)$。以前,只有在 $f$ 完全分裂为 $\mathbb{Q}_p$ 的情况下才知道算法;它需要有理根来使用树的生成函数的概念 (Z\'u\~niga-Galindo, J.
更新日期:2020-06-17
down
wechat
bug