当前位置: X-MOL 学术Spectrochim. Acta. A Mol. Biomol. Spectrosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale integration of porphyrin in GroEL protein cage: Photophysical and photochemical investigation.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy ( IF 4.3 ) Pub Date : 2020-06-17 , DOI: 10.1016/j.saa.2020.118596
Xiaoqiang Wang 1 , Zhuang Shi 1 , Han Chen 1 , Fang Huang 1
Affiliation  

In this paper, we introduce a new type of functional, supramolecular porphyrin conjugate created using the bacterial GroEL protein cage based on non-specific hydrophobic interaction. The synthesis, structure and property of the porphyrin conjugate were characterized by dynamic light scattering, UV–vis spectroscopy and fluorescence spectroscopy. We observed that the model zinc-tetraphenylporphyrin (Zn-TPP) with high hydrophobicity can be well-dispersed in aqueous solutions with the aid of GroEL open chamber, which is known to be a favorable nanocompartment for aggregation-prone molecules. The maximal encapsulation efficiency of Zn-TPP in GroEL was determined to be ~98%. It is further seen that the constructed double Zn-TPP-GroEL complex exhibited good photocatalytic activity in the model reactions of the production of singlet oxygen and the reduction of methyl viologen under illumination with visible light. Moreover, we found that GroEL can significantly improve the photostability of Zn-TPP molecules as a result of nanoscale assembly within its hydrophobic chamber. Hence enhanced water solubility and photostability of Zn-TPP, which are considered as the first two hurdles for the wide usage of porphyrins, were achieved simultaneously by the development of GroEL cage as a building block. Supramolecular nanostructures formed from porphyrins (or related molecules) and GroEL for photocatalysis would greatly simplify applications of such structures.



中文翻译:

卟啉在GroEL蛋白笼中的纳米级整合:光物理和光化学研究。

在本文中,我们介绍了一种新型的功能性超分子卟啉偶联物,该偶联物是利用细菌GroEL蛋白笼基于非特异性疏水相互作用而创建的。卟啉结合物的合成,结构和性质通过动态光散射,紫外可见光谱和荧光光谱来表征。我们观察到具有高疏水性的锌-四苯基卟啉模型(Zn-TPP)可以借助GroEL开室而很好地分散在水溶液中,该开室被认为是易于聚集分子的纳米隔室。Zn-TPP在GroEL中的最大包封效率确定为〜98%。进一步可见,所构建的双Zn-TPP-GroEL配合物在可见光照射下产生单线态氧和还原甲基紫精的模型反应中表现出良好的光催化活性。此外,我们发现GroEL可以显​​着提高Zn-TPP分子的光稳定性,这是由于其疏水室内的纳米级组装。因此,通过开发GroEL笼子作为构件,可以同时提高锌-TPP的水溶性和光稳定性,这被认为是广泛使用卟啉的前两个障碍。由卟啉(或相关分子)和GroEL形成的用于光催化的超分子纳米结构将大大简化此类结构的应用。我们发现GroEL可以显​​着提高Zn-TPP分子的光稳定性,这是由于其疏水室内的纳米级组装。因此,通过开发GroEL笼子作为构件,可以同时提高锌-TPP的水溶性和光稳定性,这被认为是广泛使用卟啉的前两个障碍。由卟啉(或相关分子)和GroEL形成的用于光催化的超分子纳米结构将大大简化此类结构的应用。我们发现GroEL可以显​​着提高Zn-TPP分子的光稳定性,这是由于其疏水室内的纳米级组装。因此,通过开发GroEL笼子作为构件,可以同时提高锌-TPP的水溶性和光稳定性,这被认为是广泛使用卟啉的前两个障碍。由卟啉(或相关分子)和GroEL形成的用于光催化的超分子纳米结构将大大简化此类结构的应用。通过开发GroEL笼子作为构件同时实现了这些目标。由卟啉(或相关分子)和GroEL形成的用于光催化的超分子纳米结构将大大简化此类结构的应用。通过开发GroEL笼子作为构件同时实现了这些目标。由卟啉(或相关分子)和GroEL形成的用于光催化的超分子纳米结构将大大简化此类结构的应用。

更新日期:2020-06-26
down
wechat
bug