当前位置: X-MOL 学术Mater. Charact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires
Materials Characterization ( IF 4.8 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.matchar.2020.110451
Eunmin Yoo , Jun Hwan Moon , Yoo Sang Jeon , Yanghee Kim , Jae-Pyoung Ahn , Young Keun Kim

Abstract As the design rule of the integrated circuits is decreasing to a 10 nm scale, the total electrical resistance of conventional Cu metallization increases rapidly. New conducting materials such as Co with shorter electron mean free paths, have gained significant attention and may replace Cu. Further, Co W alloys are being considered as alternatives to replace the TaN/Ta barrier layers. However, limited studies have been carried out to elucidate electrical resistivity changes in nanoscale Co and its alloys depending on the size and composition. In this study, we report the variations in electrical resistivity and the microstructural evolution of a series of single Co nanowires (NWs) prepared using template-assisted electrochemical deposition, with diameters ranging from 16 to 130 nm. Besides, we investigate Co W alloy NWs with W content ranging from 0 to 25.1 at.%. The Co NWs, in all diameter ranges, show substantially lower resistivity values compared to that in previous reports, where the value of an NW with a diameter of 16 nm is approximately 40 μΩ∙cm. The grain size also decreases as NW diameter decreases. Alloying W with Co NWs increases electrical resistivity. The 30 nm diameter Co W alloy NW with 25.1 at.% W shows the highest electrical resistivity value at 170 μΩ∙cm. This value decreases as post-deposition annealing temperature increases.

中文翻译:

电沉积 Co 和 Co-W 纳米线的电阻率和微观结构演变

摘要 随着集成电路的设计规则降低到10 nm 尺度,传统Cu 金属化的总电阻迅速增加。具有更短电子平均自由程的新型导电材料,如 Co,已引起广泛关注,并可能取代 Cu。此外,Co W 合金被认为是替代 TaN/Ta 阻挡层的替代品。然而,已经进行了有限的研究来阐明纳米级 Co 及其合金的电阻率变化,这取决于尺寸和成分。在这项研究中,我们报告了使用模板辅助电化学沉积制备的一系列单钴纳米线 (NW) 的电阻率变化和微观结构演变,直径范围为 16 到 130 nm。除了,我们研究了 W 含量范围为 0 到 25.1 at.% 的 Co W 合金 NW。与之前的报告相比,所有直径范围内的 Co NW 的电阻率值都显着降低,其中直径为 16 nm 的 NW 的值约为 40 μΩ∙cm。晶粒尺寸也随着 NW 直径的减小而减小。将 W 与 Co NW 合金化会增加电阻率。具有 25.1 at.% W 的 30 nm 直径 Co W 合金 NW 在 170 μΩ∙cm 处显示出最高电阻率值。该值随着沉积后退火温度的升高而降低。将 W 与 Co NW 合金化会增加电阻率。具有 25.1 at.% W 的 30 nm 直径 Co W 合金 NW 在 170 μΩ∙cm 处显示出最高电阻率值。该值随着沉积后退火温度的升高而降低。将 W 与 Co NW 合金化会增加电阻率。具有 25.1 at.% W 的 30 nm 直径 Co W 合金 NW 在 170 μΩ∙cm 处显示出最高电阻率值。该值随着沉积后退火温度的升高而降低。
更新日期:2020-08-01
down
wechat
bug