当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mathematical modeling of arsenic(V) adsorption onto iron oxyhydroxides in an adsorption-submerged membrane hybrid system.
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2020-06-17 , DOI: 10.1016/j.jhazmat.2020.123221
Muhammad Usman 1 , Mohsen Zarebanadkouki 2 , Muhammad Waseem 1 , Ioannis A Katsoyiannis 3 , Mathias Ernst 1
Affiliation  

The adsorption of arsenic (V), As(V), on two porous iron oxyhydroxide-based adsorbents, namely, micro-sized tetravalent manganese feroxyhyte (μTMF) and granular ferric hydroxide (μGFH), applied in a submerged microfiltration membrane hybrid system has been investigated and modeled. Batch adsorption tests were carried out to determine adsorption equilibrium and kinetics parameters of As(V) in a bench-scale slurry reactor setup. A mathematical model has been developed to describe the kinetic data as well as to predict the As(V) breakthrough curves in the hybrid system based on the homogeneous surface diffusion model (HSDM) and the corresponding solute mass balance equation. The kinetic parameters describing the mass transfer resistance due to intraparticle surface diffusion (Ds) involved in the HSDM was determined. The fitted Ds values for the smaller (1–63 μm) and larger (1–250 μm) diameter particles of μGFH and μTMF were estimated to be 1.09 × 10−18 m2/s and 1.53 × 10-16 m2/s, and 2.26 × 10−18 m2/s and 1.01 × 10-16 m2/s, respectively. The estimated values of mass transfer coefficient/ kinetic parameters are then applied in the developed model to predict the As(V) concentration profiles in the effluent of the hybrid membrane system. The predicted results were compared with experimental data for As(V) removal and showed an excellent agreement. After validation at varying adsorbent doses and membrane fluxes, the developed mathematical model was used to predict the influence of different operation conditions on As(V) effluent concentration profile. The model simulations also exhibit that the hybrid system benefits from increasing the amount of adsorbent initially dosed and from decreasing the membrane flux (increasing the contact time).



中文翻译:

吸附-浸没膜混合系统中砷(V)吸附到羟基氧化铁上的数学模型。

应用于浸没式微滤膜混合系统的两种多孔羟基氧化铁基吸附剂上的砷(V),As(V)的吸附是微米尺寸的四价四价锰铁氢氧化物(μTMF)和颗粒状氢氧化铁(μGFH)。被调查和建模。在台式规模的淤浆反应器中进行了批量吸附试验,以确定As(V)的吸附平衡和动力学参数。基于均匀表面扩散模型(HSDM)和相应的溶质质量平衡方程,已经开发了数学模型来描述动力学数据以及预测混合系统中的As(V)突破曲线。动力学参数描述了由于颗粒内表面扩散引起的传质阻力(ds)确定参与了HSDM。合身dsμGFH和μTMF的较小(1-63μm)和较大(1-250μm)直径的颗粒的值分别估计为1.09×10 -18 m 2 / s和1.53×10 -16 m 2 / s和2.26 ×10 -18 m 2 / s和1.01×10 -16 m 2/ s。然后,将传质系数/动力学参数的估计值应用于已开发的模型中,以预测混合膜系统流出物中的As(V)浓度分布。将该预测结果与去除As(V)的实验数据进行了比较,并显示出极好的一致性。在不同的吸附剂剂量和膜通量下进行验证后,使用开发的数学模型预测不同操作条件对As(V)废水浓度曲线的影响。模型仿真还表明,混合系统受益于增加最初添加的吸附剂的量和减少膜通量(增加接触时间)。

更新日期:2020-06-27
down
wechat
bug