当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D interwoven MXene networks fabricated by the assistance of bacterial celluloses as high-performance cathode material for rechargeable magnesium battery
Applied Surface Science ( IF 6.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.apsusc.2020.146985
Jinglian Zhu , Rui Shi , Yana Liu , Yunfeng Zhu , Jiguang Zhang , Xiaohui Hu , Liquan Li

Abstract 3D interwoven Ti3C2 MXene networks fabricated with the assistance of bacterial celluloses (BC) are used as a cathode material for rechargeable magnesium ion battery, which delivers an impressive specific capacity (171 mA h g−1 at 50 mA g−1) and good cycling performance (88% capacity retention after 100 cycles). In contrast, pure Ti3C2 film only shows a reversible capacity of less than 10 mA h g−1 at 50 mA g−1. Compared to pure Ti3C2 film (d = 1.4 nm), 3D interwoven Ti3C2 MXene networks (BC/Ti3C2 film) possess larger interlayer spacing (d = 1.8 nm), benefiting the magnesium migration, which is proved through DFT calculation. BC/Ti3C2 film with porous surface is observed through FESEM image. While for Ti3C2 film, all flakes stack together. As expected, the diffusion paths for magnesium ions are optimized in the BC/Ti3C2 film. Besides, Galvanostatic Intermittent Titration Technique shows a much larger magnesium diffusion coefficient of BC/Ti3C2 film than that of pure Ti3C2 film. Therefore, the larger interlayer spacing, optimized diffusion paths and larger magnesium diffusion coefficient contribute to the high electrochemical performance. Moreover, the working mechanisms of magnesium ion battery equipped with BC/Ti3C2 film are investigated. This work provides a new insight to design MXene-based cathode materials with high-performance.

中文翻译:

3D 交织 MXene 网络由细菌纤维素辅助制成,作为可充电镁电池的高性能阴极材料

摘要 在细菌纤维素 (BC) 的帮助下制造的 3D 交织 Ti3C2 MXene 网络用作可充电镁离子电池的阴极材料,具有令人印象深刻的比容量(171 mA hg-1,50 mA g-1)和良好的循环性能(100 次循环后容量保持率为 88%)。相比之下,纯 Ti3C2 薄膜在 50 mA g-1 下仅显示出小于 10 mA h g-1 的可逆容量。与纯 Ti3C2 薄膜(d = 1.4 nm)相比,3D 交织 Ti3C2 MXene 网络(BC/Ti3C2 薄膜)具有更大的层间距(d = 1.8 nm),有利于镁迁移,这通过 DFT 计算得到了证明。通过FESEM图像观察具有多孔表面的BC/Ti3C2膜。而对于 Ti3C2 薄膜,所有薄片都堆叠在一起。正如预期的那样,镁离子的扩散路径在 BC/Ti3C2 薄膜中得到了优化。除了,恒电流间歇滴定技术显示 BC/Ti3C2 膜的镁扩散系数比纯 Ti3C2 膜大得多。因此,较大的层间距、优化的扩散路径和较大的镁扩散系数有助于提高电化学性能。此外,研究了配备 BC/Ti3C2 薄膜的镁离子电池的工作机制。这项工作为设计高性能 MXene 基正极材料提供了新思路。研究了带有BC/Ti3C2薄膜的镁离子电池的工作机理。这项工作为设计高性能 MXene 基正极材料提供了新思路。研究了带有BC/Ti3C2薄膜的镁离子电池的工作机理。这项工作为设计高性能 MXene 基正极材料提供了新思路。
更新日期:2020-10-01
down
wechat
bug