当前位置: X-MOL 学术Positivity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unitarily invariant norm inequalities for functions of accretive-dissipative $$2\times 2$$2×2 block matrices
Positivity ( IF 0.8 ) Pub Date : 2020-06-16 , DOI: 10.1007/s11117-020-00770-w
Amel Bourahli , Omar Hirzallah , Fuad Kittaneh

Let \(T_{11},T_{12},T_{21},\) and \(T_{22}\) be \(n\times n\) complex matrices, \(\ T=\left( \begin{array}{cc} T_{11} &{} T_{12} \\ T_{21} &{} T_{22} \end{array} \right) \) be accretive-dissipative, \(\gamma \in (0,1]\), \(r\ge 2,\ \)and let \( \alpha ,\beta \in [0,1]\) such that \(\alpha +\beta =1\). If f is an increasing convex function on \([0,\infty )\) such that \(f(0)=0\), then

$$\begin{aligned} \left| \left| \left| f\left( \left| T_{12}+\left( 2\alpha -1\right) T_{21}^{*}\right| ^{r}\right) +f\left( 2^{r}\alpha ^{r/2}\beta ^{r/2}\left| T_{21}^{*}\right| ^{r}\right) \right| \right| \right| \le \gamma \left| \left| \left| f\left( \frac{\left| T\right| ^{r}}{\gamma ^{r/2}}\right) \right| \right| \right| \end{aligned}$$

for every unitarily invariant norm. In addition, if T is contraction and f is submultiplicative, then

$$\begin{aligned}&\left| \left| \left| \left( f\left( \left| T_{12}+\left( 2\alpha -1\right) T_{21}^{*}\right| ^{2}\right) +f\left( 4\alpha \beta \left| T_{21}^{*}\right| ^{2}\right) \right) \right| \right| \right| \\&\quad \le f^{2}\left( \sqrt{2}\right) \left| \left| \left| f^{r}\left( \left| T_{11}\right| ^{1/2}\right) \right| \right| \right| ^{1/r}\left| \left| \left| f^{s}\left( \left| T_{22}\right| ^{1/2}\right) \right| \right| \right| ^{1/s} \end{aligned}$$

for every unitarily invariant norm and for every positive real numbers rs with \(\frac{1}{r}+\frac{1}{s}=1\). Related inequalities for concave functions are also given.



中文翻译:

耗散性$$ 2 \乘以2 $$ 2×2块矩阵的函数的不变范数不等式

\(T_ {11},T_ {12},T_ {21},\)\(T_ {22} \)\(n乘以n \)复数矩阵,\(\ T = \ left(\开始{array} {cc} T_ {11}&{} T_ {12} \\ T_ {21}&{} T_ {22} \ end {array} \ right)\)会产生耗散性,\(\ gamma \ in(0,1] \)\(r \ ge 2,\ \)并令\(\ alpha,\ beta \ in [0,1] \)使得\(\ alpha + \ beta = 1 \ )如果f\([0,\ infty)\)上的递增凸函数,使得\(f(0)= 0 \),则

$$ \ begin {aligned} \ left | \ left | \ left | f \ left(\ left | T_ {12} + \ left(2 \ alpha -1 \ right)T_ {21} ^ {*} \ right | ^ {r} \ right)+ f \ left(2 ^ {r } \ alpha ^ {r / 2} \ beta ^ {r / 2} \ left | T_ {21} ^ {*} \ right | ^ {r} \ right)\ right | \ right | \ right | \ le \ gamma \ left | \ left | \ left | f \ left(\ frac {\ left | T \ right | ^ {r}} {\ gamma ^ {r / 2}} \ right)\ right | \ right | \ right | \ end {aligned} $$

每个统一不变的规范。另外,如果T是收缩且f是可乘的,则

$$ \ begin {aligned}&\ left | \ left | \ left | \ left(f \ left(\ left | T_ {12} + \ left(2 \ alpha -1 \ right)T_ {21} ^ {*} \ right | ^ {2} \ right)+ f \ left(4 \ alpha \ beta \ left | T_ {21} ^ {*} \ right | ^ {2} \ right)\ right)\ right | \ right | \ right | \\&\ quad \ le f ^ {2} \ left(\ sqrt {2} \ right)\ left | \ left | \ left | f ^ {r} \ left(\ left | T_ {11} \ right | ^ {1/2} \ right)\ right | \ right | \ right | ^ {1 / r} \左| \ left | \ left | f ^ {s} \ left(\ left | T_ {22} \ right | ^ {1/2} \ right)\ right | \ right | \ right | ^ {1 / s} \ end {aligned} $$

对于每个单位不变范数和每个正实数r,  s\(\ frac {1} {r} + \ frac {1} {s} = 1 \)。还给出了凹函数的相关不等式。

更新日期:2020-06-16
down
wechat
bug