当前位置: X-MOL 学术J. Solid State Electr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics
Journal of Solid State Electrochemistry ( IF 2.6 ) Pub Date : 2020-06-16 , DOI: 10.1007/s10008-020-04717-9
E.M. Gavilán-Arriazu , M.P. Mercer , O.A. Pinto , O.A. Oviedo , D.E. Barraco , H.E. Hoster , E.P.M. Leiva

The voltammetric behavior of Li+ intercalation/deintercalation in/from LiMn2O4 thin films and single particles is simulated, supporting very recent experimental results. Experiments and calculations both show that particle size and geometry are crucial for the electrochemical response. A remarkable outcome of this research is that higher potential sweep rates, of the order of several millivolts per second, may be used to characterize nanoparticles by voltammetry sweeps, as compared with macroscopic systems. This is in line with previous conclusions drawn for related single particle systems using kinetic Monte Carlo simulations. The impact of electrode kinetics and finite space diffusion on the reversibility of the process and the finiteness of the diffusion in ion Li / LiMn2O4 (de)intercalation is also discussed in terms of preexisting modeling.



中文翻译:

纳米系统中锂离子嵌入的循环伏安法数值模拟:扩散与电极动力学的有限性

Li +在LiMn 2 O 4中或从LiMn 2 O 4中嵌入/脱嵌的伏安行为模拟了薄膜和单个颗粒,支持了最近的实验结果。实验和计算均表明,粒径和几何形状对于电化学响应至关重要。这项研究的显著成果是,与宏观系统相比,可以通过伏安法扫描将更高的潜在扫描速率(每秒几毫伏的数量级)用于表征纳米颗粒。这符合先前使用动力学蒙特卡洛模拟法对相关单粒子系统得出的结论。电极动力学和有限空间扩散对过程可逆性的影响以及离子Li / LiMn 2 O 4(de)嵌入中扩散的有限性也通过预先存在的模型进行了讨论。

更新日期:2020-06-16
down
wechat
bug