当前位置: X-MOL 学术Electr. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Handshaking of VSG with charging station to support the frequency in microgrid
Electrical Engineering ( IF 1.6 ) Pub Date : 2020-06-17 , DOI: 10.1007/s00202-020-01029-z
Karanveer Dhingra , Mukesh Singh

In today’s scenario, frequency regulation is the main concern in islanded microgrids (MG). This concern of frequency in MG can be sorted out in various ways. Several authors have used different strategies to support the MG’s frequency. Handshaking of charging stations (CS) among each other through proper control mechanism can be one of the approaches to sort out fluctuation of frequency in MG. In this paper, novel handshaking process among multiple CS has been carried out by using virtual synchronous generator (VSG). These multiple CS coordinate with each other to accomplish the handshaking process by controlling the charging and discharging of electric vehicle (EV) batteries through VSG mechanism. Fleet of EVs placed at these CS act as an energy storage device for MG. Aggregator plays a role to collect the information from multiple CS about the charging requirements of the EVs. To accomplish the process of handshaking, simulations have been carried out in MATLAB simscape by considering the different case studies. In these case studies, diverse fleet of EVs are assumed to be deployed at the CS. From the simulation results, it has been observed that each individual EV deployed at the CS participate in the charging and discharging of their batteries to achieve the process of handshaking and hence to provide the support to MG’s frequency through VSG mechanism. Further, the analysis of the effects of variation of the PV array irradiance on the charging and discharging of EV batteries has also been done during the handshaking process.

中文翻译:

VSG 与充电站握手以支持微电网中的频率

在今天的场景中,频率调节是孤岛微电网 (MG) 的主要问题。MG 中对频率的这种关注可以通过多种方式解决。几位作者使用了不同的策略来支持 MG 的频率。充电站(CS)之间通过适当的控制机制握手可以是解决MG中频率波动的方法之一。在本文中,使用虚拟同步发电机(VSG)在多个 CS 之间进行了新的握手过程。这些多个 CS 相互协调,通过 VSG 机制控制电动汽车 (EV) 电池的充电和放电来完成握手过程。放置在这些 CS 上的 EV 车队充当 MG 的能量存储设备。聚合器的作用是从多个 CS 收集有关电动汽车充电要求的信息。为了完成握手过程,考虑到不同的案例研究,在MATLAB simscape 中进行了仿真。在这些案例研究中,假设在 CS 部署了不同的电动汽车车队。从仿真结果可以看出,部署在 CS 的每个单独的 EV 都参与其电池的充电和放电以实现握手过程,从而通过 VSG 机制为 MG 的频率提供支持。此外,在握手过程中还分析了光伏阵列辐照度变化对电动汽车电池充电和放电的影响。通过考虑不同的案例研究,在 MATLAB simscape 中进行了模拟。在这些案例研究中,假设在 CS 部署了不同的电动汽车车队。从仿真结果可以看出,部署在 CS 的每个单独的 EV 都参与其电池的充电和放电以实现握手过程,从而通过 VSG 机制为 MG 的频率提供支持。此外,在握手过程中还分析了光伏阵列辐照度变化对电动汽车电池充电和放电的影响。通过考虑不同的案例研究,在 MATLAB simscape 中进行了模拟。在这些案例研究中,假设在 CS 部署了不同的电动汽车车队。从仿真结果可以看出,部署在 CS 的每个单独的 EV 都参与其电池的充电和放电以实现握手过程,从而通过 VSG 机制为 MG 的频率提供支持。此外,在握手过程中还分析了光伏阵列辐照度变化对电动汽车电池充电和放电的影响。据观察,部署在 CS 的每个单独的 EV 都参与其电池的充电和放电,以实现握手过程,从而通过 VSG 机制为 MG 的频率提供支持。此外,在握手过程中还分析了光伏阵列辐照度变化对电动汽车电池充电和放电的影响。据观察,部署在 CS 的每个单独的 EV 都参与其电池的充电和放电,以实现握手过程,从而通过 VSG 机制为 MG 的频率提供支持。此外,在握手过程中还分析了光伏阵列辐照度变化对电动汽车电池充电和放电的影响。
更新日期:2020-06-17
down
wechat
bug