当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genetic-Algorithm-Aided Meta-Atom Multiplication for Improved Absorption and Coloration in Nanophotonics
ACS Photonics ( IF 6.5 ) Pub Date : 2020-06-15 , DOI: 10.1021/acsphotonics.0c00266
Changxu Liu 1, 2 , Stefan A. Maier 2, 3 , Guixin Li 1, 4
Affiliation  

For a repertoire of nanophotonic systems, including photonic crystals, metasurfaces, and plasmonic structures, unit cell with a single element is conventionally used for the simplicity of design. The extension of the unit cell with multiple meta-atoms drastically enlarges the parameter space and consequently provides potential configurations with improved device performance. Simultaneously, the multiplication does not induce additional complexity for lithography-based fabrications. However, the substantially increased number of parameters makes the design methodology based on physical intuition and parameter sweep impractical. Here, we show that expanding the number of meta-atoms in the unit cell significantly improves the performance of nanophotonic systems by the virtue of a genetic algorithm-based optimizer. Our approach includes physical intuition endowed in the geometry of meta-atoms, providing additional physical understanding of the optimization process. We demonstrate two photonic applications, including prominent enhancement of a broadband absorption and enlargement of the color coverage of plasmonic nanostructures. Not limited to the two proof-of-concept demonstrations, this methodology can be applied to all meta-atom-based nanophotonic systems, including plasmonic near-field enhancement and nonlinear frequency conversion, as well as a simultaneous control of phase and polarization for metasurfaces.

中文翻译:

遗传算法辅助的元原子倍增,以改善纳米光子学的吸收和着色。

对于包括光子晶体,超表面和等离激元结构在内的纳米光子系统,为了简化设计,通常使用具有单个元素的晶胞。具有多个亚原子的晶胞的扩展极大地扩大了参数空间,因此提供了具有改善的器件性能的潜在配置。同时,相乘不会给基于光刻的制造带来额外的复杂性。然而,大量增加的参数使得基于物理直觉和参数扫描的设计方法不可行。在这里,我们表明,借助基于遗传算法的优化器,扩大晶胞中亚原子的数量可以显着提高纳米光子系统的性能。我们的方法包括赋予亚原子几何形状的物理直觉,从而使您对优化过程有了更多的物理了解。我们演示了两个光子应用,包括宽带吸收的显着增强和等离子体纳米结构的颜色覆盖范围的扩大。这种方法不仅限于两次概念验证演示,还可以应用于所有基于超原子的纳米光子系统,包括等离子体近场增强和非线性频率转换,以及同时控制超表面的相位和极化。包括宽带吸收的显着增强和等离子体纳米结构的颜色覆盖范围的扩大。这种方法不仅限于两次概念验证演示,还可以应用于所有基于超原子的纳米光子系统,包括等离子体近场增强和非线性频率转换,以及同时控制超表面的相位和极化。包括宽带吸收的显着增强和等离子体纳米结构的颜色覆盖范围的扩大。这种方法不仅限于两次概念验证演示,还可以应用于所有基于超原子的纳米光子系统,包括等离子体近场增强和非线性频率转换,以及同时控制超表面的相位和极化。
更新日期:2020-07-15
down
wechat
bug