当前位置: X-MOL 学术Sci. Tech. Built Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A systematic and probabilistic approach for optimal design and on-site adaptive balancing of building central cooling systems concerning uncertainties
Science and Technology for the Built Environment ( IF 1.7 ) Pub Date : 2020-06-16 , DOI: 10.1080/23744731.2020.1776068
Hangxin Li 1 , Shengwei Wang 1
Affiliation  

In current design practice, chillers and pumps are often oversized due to conservative consideration of uncertainties using safety factors to avoid the risk of undersizing, which often results in significant energy waste in operation. In recent years, probabilistic optimal design methods have been proposed for the components of cooling systems, enabling risk-based decision-making rather than sizing systems with safety margins to consider uncertainties. However, approaches for probabilistic optimal design and balancing of entire cooling systems are still absent. This article therefore presents a systematic approach of probabilistic optimal design and adaptive balancing for central cooling systems of buildings to minimize the impacts (energy waste and increased life-cycle cost) of oversizing in operation. The probabilistic optimal design considers both the uncertainties of design inputs and the flexibility of on-site adaptive balancing, while adaptive balancing enables flexible balancing to maximize energy saving according to characteristics of constructed systems. A case study is conducted to test and validate the proposed approach. Results show that significant cost reduction and energy saving were achieved for chillers and pumps, respectively, through the systematic approach of probabilistic design and adaptive balancing. Energy consumption of pumps was reduced by 41% through coordinating pump design with probabilistic chiller design.



中文翻译:

针对不确定性的建筑中央冷却系统的最优设计和现场自适应平衡的系统和概率方法

在当前的设计实践中,由于使用安全系数来保守地考虑不确定性,从而避免尺寸过小的风险,致冷器和泵的尺寸通常过大,这通常会导致运行中的大量能源浪费。近年来,已经提出了针对冷却系统组件的概率最优设计方法,从而能够基于风险进行决策,而不是根据具有安全余量的系统来确定不确定性。但是,仍然缺少用于概率最优设计和整个冷却系统平衡的方法。因此,本文提出了一种系统的概率优化设计和建筑物中央冷却系统自适应平衡的系统方法,以最大程度地减少运营规模过大的影响(能源浪费和增加的生命周期成本)。概率最优设计既考虑了设计输入的不确定性,又考虑了现场自适应平衡的灵活性,而自适应平衡则可以根据构造系统的特性灵活地进行平衡,以最大程度地节省能源。进行了案例研究,以测试和验证所提出的方法。结果表明,通过系统的概率设计和自适应平衡方法,冷却器和水泵分别实现了显着的成本降低和节能效果。通过将泵设计与概率冷却器设计相协调,泵的能耗降低了41%。自适应平衡可实现灵活的平衡,从而根据构造系统的特性最大程度地节省能源。进行了案例研究,以测试和验证所提出的方法。结果表明,通过系统的概率设计和自适应平衡方法,冷却器和水泵分别实现了显着的成本降低和节能效果。通过将泵设计与概率冷却器设计相协调,泵的能耗降低了41%。自适应平衡可实现灵活的平衡,从而根据构造系统的特性最大程度地节省能源。进行了案例研究,以测试和验证所提出的方法。结果表明,通过系统的概率设计和自适应平衡方法,冷却器和水泵分别实现了显着的成本降低和节能效果。通过将泵设计与概率冷却器设计相协调,泵的能耗降低了41%。

更新日期:2020-06-29
down
wechat
bug