当前位置: X-MOL 学术J. Geophys. Res. Planets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lunar Magnetic Field Models From Lunar Prospector and SELENE/Kaguya Along‐Track Magnetic Field Gradients
Journal of Geophysical Research: Planets ( IF 4.8 ) Pub Date : 2020-06-16 , DOI: 10.1029/2019je006187
D. Ravat 1 , M. E. Purucker 2 , N. Olsen 3
Affiliation  

We use L1‐norm model regularization of |Br| component at the surface on magnetic monopoles bases and along‐track magnetic field differences alone (without vector observations) to derive high quality global magnetic field models at the surface of the Moon. The practical advantages to this strategy are the following: monopoles are more stable at closer spacing in comparison to dipoles, improving spatial resolution; L1‐norm model regularization leads to sparse models which may be appropriate for the Moon which has regions of localized magnetic field features; and along‐track differences reduce the need for ad‐hoc external field noise reduction strategies. We examine also the use of Lunar Prospector and SELENE/Kaguya magnetometer data, combined and separately, and find that the Lunar Prospector along‐track vector field differences lead to surface field models that require weaker regularization and, hence, result in higher spatial resolution. Significantly higher spatial resolution (wavelengths of roughly 25–30 km) and higher amplitude surface magnetic fields can be derived over localized regions of high amplitude anomalies (due to their higher signal‐to‐noise ratio). These high‐resolution field models are also compared with the results of Surface Vector Mapping approach of Tsunakawa et al. (2015, https://doi.org/10.1002/2014JE004785). Finally, the monopoles‐ as well as dipoles‐based patterns of the Serenitatis high amplitude magnetic feature have characteristic textbook patterns of Br and Bθ component fields from a nearly vertically downwardly magnetized source region and it implies that the principal source of the anomaly was formed when the region was much closer to the north magnetic pole of the Moon.

中文翻译:

月球勘探者和SELENE / Kaguya沿轨磁场梯度的月球磁场模型

我们使用| B r的L1-norm模型正则化| 磁单极子表面上的磁通分量和仅沿轨道的磁场差异(无矢量观测值)即可得出月球表面的高质量全局磁场模型。这种策略的实际优势如下:与偶极子相比,单极子在更近的间距上更稳定,从而提高了空间分辨率;L1-范数模型正则化会导致稀疏模型,这可能适用于具有局部磁场特征区域的月球;沿轨差异减少了对临时外部场降噪策略的需求。我们还将研究结合使用和单独使用Lunar Prospector和SELENE / Kaguya磁力计数据的方法,并发现,Lunar Prospector沿径迹矢量场的差异导致需要弱正则化的地表模型,因此导致更高的空间分辨率。在高振幅异常的局部区域(由于其较高的信噪比),可以得到更高的空间分辨率(大约25–30 km的波长)和更高振幅的表面磁场。这些高分辨率场模型也与Tsunakawa等人的“表面向量映射”方法的结果进行了比较。(2015年,https://doi.org/10.1002/2014JE004785)。最后,Serenitatis高振幅磁特征的单极和偶极子模式具有B的特征教科书模式。在高振幅异常的局部区域(由于其较高的信噪比),可以得到更高的空间分辨率(大约25–30 km的波长)和更高振幅的表面磁场。这些高分辨率场模型也与Tsunakawa等人的“表面向量映射”方法的结果进行了比较。(2015年,https://doi.org/10.1002/2014JE004785)。最后,Serenitatis高振幅磁特征的单极和偶极子模式具有B的特征教科书模式。在高振幅异常的局部区域(由于其较高的信噪比),可以得到更高的空间分辨率(大约25–30 km的波长)和更高振幅的表面磁场。这些高分辨率场模型也与Tsunakawa等人的“表面向量映射”方法的结果进行了比较。(2015年,https://doi.org/10.1002/2014JE004785)。最后,Serenitatis高振幅磁特征的单极和偶极子模式具有B的特征教科书模式。org / 10.1002 / 2014JE004785)。最后,Serenitatis高振幅磁特征的单极和偶极子模式具有B的特征教科书模式。org / 10.1002 / 2014JE004785)。最后,Serenitatis高振幅磁特征的单极和偶极子模式具有B的特征教科书模式。r分量场是从几乎垂直向下磁化的源区中产生的,这表明异常区域的主要源是在该区域更靠近月球的北磁极时形成的。
更新日期:2020-07-18
down
wechat
bug