当前位置: X-MOL 学术Adv. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-boson scattering processes in the massless Spin-Boson model – A non-perturbative formula
Advances in Mathematics ( IF 1.5 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.aim.2020.107248
Miguel Ballesteros , Dirk-André Deckert , Felix Hänle

In scattering experiments, physicists observe so-called resonances as peaks at certain energy values in the measured scattering cross sections per solid angle. These peaks are usually associate with certain scattering processes, e.g., emission, absorption, or excitation of certain particles and systems. On the other hand, mathematicians define resonances as poles of an analytic continuation of the resolvent operator through complex dilations. A major challenge is to relate these scattering and resonance theoretical notions, e.g., to prove that the poles of the resolvent operator induce the above mentioned peaks in the scattering matrix. In the case of quantum mechanics, this problem was addressed in numerous works that culminated in Simon's seminal paper [33] in which a general solution was presented for a large class of pair potentials. However, in quantum field theory the analogous problem has been open for several decades despite the fact that scattering and resonance theories have been well-developed for many models. In certain regimes these models describe very fundamental phenomena, such as emission and absorption of photons by atoms, from which quantum mechanics originated. In this work we present a first non-perturbative formula that relates the scattering matrix to the resolvent operator in the massless Spin-Boson model. This result can be seen as a major progress compared to our previous works [13] and [12] in which we only managed to derive a perturbative formula.

中文翻译:

无质量自旋玻色子模型中的单玻色子散射过程——非微扰公式

在散射实验中,物理学家观察到所谓的共振,即在每个立体角测量的散射截面中某些能量值处的峰值。这些峰值通常与某些散射过程有关,例如某些粒子和系统的发射、吸收或激发。另一方面,数学家通过复数膨胀将共振定义为解析算子的解析连续的极点。一个主要的挑战是将这些散射和共振理论概念联系起来,例如,证明解析算子的极点会在散射矩阵中引起上述峰。在量子力学的情况下,这个问题在许多工作中得到解决,在西蒙的开创性论文 [33] 中达到高潮,其中提出了一大类对势的一般解决方案。然而,在量子场论中,尽管散射和共振理论已经为许多模型得到了很好的发展,但类似的问题已经开放了几十年。在某些情况下,这些模型描述了非常基本的现象,例如原子对光子的发射和吸收,量子力学起源于这些现象。在这项工作中,我们提出了第一个非微扰公式,该公式将散射矩阵与无质量自旋玻色子模型中的解析算子相关联。与我们之前的工作 [13] 和 [12] 相比,这个结果可以被视为一个重大进步,在这些工作中,我们只设法推导出了一个微扰公式。在某些情况下,这些模型描述了非常基本的现象,例如原子对光子的发射和吸收,量子力学起源于这些现象。在这项工作中,我们提出了第一个非微扰公式,该公式将散射矩阵与无质量自旋玻色子模型中的解析算子相关联。与我们之前的工作 [13] 和 [12] 相比,这个结果可以被视为一个重大进步,在这些工作中,我们只设法推导出了一个微扰公式。在某些情况下,这些模型描述了非常基本的现象,例如原子对光子的发射和吸收,量子力学起源于这些现象。在这项工作中,我们提出了第一个非微扰公式,该公式将散射矩阵与无质量自旋玻色子模型中的解析算子相关联。与我们之前的工作 [13] 和 [12] 相比,这个结果可以被视为一个重大进步,在这些工作中,我们只设法推导出了一个微扰公式。
更新日期:2020-09-01
down
wechat
bug