当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems.
Chemical Society Reviews ( IF 46.2 ) Pub Date : 2020-06-15 , DOI: 10.1039/d0cs00021c
Chen Li 1 , Qian Li , Yusuf Valentino Kaneti , Dan Hou , Yusuke Yamauchi , Yiyong Mai
Affiliation  

Self-assembly of block copolymers (BCPs) provides a versatile strategy for controllable preparation of a broad range of functional materials with different ordered structures. In recent decades, this soft-templating strategy has been widely utilized for preparing a wide range of mesoporous materials. These porous materials have attracted tremendous interest in energy storage and conversion (ESC) applications in view of their ability to absorb, store, and interact with guest species on their exterior/interior surfaces and in the pore space. Compared with other synthetic approaches, such as template-free and hard-templating methods, BCP soft-templating protocols show great advantages in the construction of large mesopores with diameters between 10–60 nm, which are suitable for applications requiring the storage or hosting of large-sized species/molecules. In addition, this strategy shows incomparable merits in the flexible control of pore size/architecture/wall thickness, which determines the final performance of mesoporous materials in ESC devices. In the last decade, rapid development has been witnessed in the area of BCP-templated mesoporous materials. In this review paper, we overview the progress of this field over the past 10 years, with an emphasis on the discussions of synthetic methodologies, the control of materials structures (including morphology and pore size/shape), and potential applications particularly in rechargeable batteries, supercapacitors, electro-/photocatalysis, solar cells, etc.

中文翻译:

嵌段共聚物向介孔材料的自组装,用于能量存储和转换系统。

嵌段共聚物(BCP)的自组装提供了一种可控策略,可控地制备具有不同有序结构的多种功能材料。在最近的几十年中,这种软模板策略已被广泛用于制备各种介孔材料。这些多孔材料由于其在外/内表面和孔空间中吸收,存储和与客体物质相互作用的能力而在能量存储和转换(ESC)应用中引起了极大的兴趣。与无模板和硬模板方法等其他合成方法相比,BCP软模板协议在构建直径在10–60 nm之间的大中孔时显示出很大的优势,适用于需要存储或容纳大型物种/分子的应用。另外,该策略在灵活控制孔径/结构/壁厚方面显示出无与伦比的优点,它决定了ESC设备中介孔材料的最终性能。在过去的十年中,在以BCP为模板的介孔材料领域见证了快速的发展。在这篇综述文件中,我们概述了该领域在过去十年中的进展,重点是合成方法论,材料结构的控制(包括形态和孔径/形状)的讨论以及潜在的应用,尤其是在可充电电池中的应用。 ,超级电容器,电催化/光催化,太阳能电池,这种策略在灵活控制孔径/结构/壁厚方面显示出无与伦比的优点,它决定了ESC设备中介孔材料的最终性能。在过去的十年中,在以BCP为模板的介孔材料领域见证了快速的发展。在这篇综述文件中,我们概述了该领域在过去十年中的进展,重点是合成方法论,材料结构的控制(包括形态和孔径/形状)的控制以及潜在的应用,尤其是在可充电电池中的应用。 ,超级电容器,电催化/光催化,太阳能电池,该策略在灵活控制孔径/结构/壁厚方面显示出无与伦比的优点,它决定了ESC设备中介孔材料的最终性能。在过去的十年中,在以BCP为模板的介孔材料领域见证了快速的发展。在这篇综述文件中,我们概述了该领域在过去十年中的进展,重点是合成方法论,材料结构的控制(包括形态和孔径/形状)的控制以及潜在的应用,尤其是在可充电电池中的应用。 ,超级电容器,电催化/光催化,太阳能电池,等等
更新日期:2020-07-21
down
wechat
bug