当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Universal elastic mechanism for stinger design
Nature Physics ( IF 17.6 ) Pub Date : 2020-06-15 , DOI: 10.1038/s41567-020-0930-9
Kaare H. Jensen , Jan Knoblauch , Anneline H. Christensen , Katrine S. Haaning , Keunhwan Park

Living organisms use stingers that vary in length L over eight orders of magnitude, from a few tens of nanometres to several metres, across a wide array of biological taxa. Despite the extreme variation in size, their structures are strikingly similar. However, the mechanism responsible for this remarkable morphological convergence remains unknown. Using basic physical arguments and biomimetic experiments, we reveal an optimal design strategy that links their length, base diameter d0, Young’s modulus E and friction force per unit area μp0. This principle can be framed simply as \({d}_{0} \approx {(\mu {p}_{0}/E)}^{1/3}L\). Existing data from measurements on viruses, algae, marine invertebrates, terrestrial invertebrates, plants, terrestrial vertebrates, marine vertebrates—as well as man-made objects such as nails, needles and weapons—are consistent with our predictions. Our results highlight the evolutionary adaptation of mechanical traits to the constraints imposed by friction, elastic stability and cost.



中文翻译:

毒刺设计的通用弹性机构

活生物体使用的ing鞭,其长度L超过八个数量级,从数十纳米到几米不等,分布在各种各样的生物类群中。尽管尺寸变化很大,但它们的结构却极为相似。但是,导致这种显着形态收敛的机制仍然未知。使用基本的物理参数和仿生实验中,我们揭示了一个最佳的设计策略,链接它们的长度,基部直径d 0,杨氏模量Ë和每单位面积的摩擦力μ p 0。该原理可以简单地表示为\({d} _ {0} \ approx {(\ mu {p} _ {0} / E)} ^ {1/3} L \)。来自病毒,藻类,海洋无脊椎动物,陆生无脊椎动物,植物,陆生脊椎动物,海洋脊椎动物以及人造物体(例如指甲,针和武器)的测量数据均与我们的预测一致。我们的结果强调了机械特性在进化上适应摩擦,弹性稳定性和成本所施加的约束。

更新日期:2020-06-15
down
wechat
bug