当前位置: X-MOL 学术Contrib. Plasm. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Corrigendum: Thermal dynamics in the flux‐coordinate independent turbulence code GRILLIX
Contributions to Plasma Physics ( IF 1.3 ) Pub Date : 2020-06-14 , DOI: 10.1002/ctpp.202000056
W. Zholobenko 1 , A. Stegmeir 1 , T. Body 1 , A. Ross 1 , P. Manz 1 , O. Maj 1 , D. Coster 1 , F. Jenko 1 , M. Francisquez 2 , B. Zhu 3 , B.N. Rogers 4
Affiliation  

We have discovered that one of the original articles [1] findings, that the actual choice of the dimensionless parameter χ i 0 for the ion heat conductivity11 *χ i 0 is obtained by normalizing the Braginskii ion parallel heat conductivity to urn:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0001, with urn:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0002. seemed to play no role for the simulation results, was not physical. Instead, due to a mistake in the handling of input parameters, χ i 0 was actually not used in the code ‐ the dimensionless electron heat

conductivity χ e 0 was used instead. Hence, the results in chapter 4 and the conclusions are correct only if χ i 0 = χ e 0. For the reference case, this means χ i 0 = χ e 0 = 26.6 was used,22 We have for deuterium χ i 0/χ e 0 = 23 ≠ 35 because the electron collision frequency was calculated with Z eff = 1.5. instead of what we thought was χ i 0 = 1.15 and χ e 0 = 26.6. The rest of the code and model is correct.

We have fixed the error, verified the code and rerun all the simulations. The main conclusion is that the dimensionless ion heat conductivity χ i 0 plays as much of a role for the equilibrium ion temperature profile T i as the electron heat conductivity χ e 0 for the electron profile T e . Further, with the correct heat conductivity χ i 0 = 1.15, T i saturates faster ‐ after urn:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0003 ms ‐ while it was still not saturated at 1.5 ms with the wrong χ i 0 = χ e 0 = 26.6. The saturation time for the plasma density n and electron temperature T e remain the same ‐ urn:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0004 ms.

Figure 1, left, shows the saturated radial profiles for the reference simulation. We find that in comparison to the mistakenly used χ i 0 = 26.6, the proper, lower ion heat conductivity χ i 0 = 1.15 increases the stationary ion temperature gradient r T i in the confined region, leading to T i  < T e at the separatrix. The T i profile and fluctuation level are now similar to those of the plasma density n . The T e and n profiles remain unaffected. The stationary profile of the electrostatic potential ϕ flattens in the confined region due to the lower T i , while it remains the same in the SOL following T e . In the far SOL, T i  > T e is found due to electron sheath heat transmission ‐ unlike in the case without this boundary condition (γ e  = 0). We note that the previously observed result, T i  > T e also at the separatrix, is recovered again at higher temperature, see double temperature case in Figure 1, right.

CTPP-202000056-FIG-0001-c
FIGURE 1
Open in figure viewerPowerPoint
Mean radial profiles (T i , T e , n , ϕ ) at the outboard mid‐plane in saturated state. Dotted lines indicate the ±σ f fluctuation level. The negative potential ϕ and its fluctuation level are divided by Λ = 2.69. LCFS and source region are marked. Left: reference case with T e  = T i  = 90 eV at the core boundary, with additionally the T e profile from the simulation with no sheath heat conduction (case 1 from chapter 4.1, γ e  = 0). Right: simulation with double the temperature
CTPP-202000056-FIG-0002-c
FIGURE 2
Open in figure viewerPowerPoint
Frequency spectrum of poloidally and toroidally averaged electrostatic potential fluctuations

Other results of the original article [1] hold true, at least qualitatively. The GAM frequency spectrum, shown in Figure 2, is somewhat different quantitatively. With the lower ion heat conductivity χ i 0, the ion temperature fluctuates more, but overall the turbulence is nonetheless enhanced with increasing density and suppressed with increasing temperature, see Figure 3. In cases 2 and 3 from chapter 4.1, we already had χ i 0 = χ e 0 (and case 4 was actually nearly the same as the reference scenario), so the result holds that reducing χ i 0 and χ e 0 below 0.1 has no impact on outboard midplane profiles.

CTPP-202000056-FIG-0003-c
FIGURE 3
Open in figure viewerPowerPoint
Outboard mid‐plane ion temperature snapshot at 1.44 ms in: double density, reference, double temperature (left to right). Horizontal axis is (R  − R 0)/R 0. LCFS marked by blue dashed line

We additionally remark that the Bohm sheath boundary conditions (7) for parallel velocity should contain T i , urn:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0005. Also, there is a mistake in the indexes in Equation (9): instead of p i  + j , it should read urn:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0006.



中文翻译:

勘误:磁通坐标无关的湍流代码GRILLIX中的热动力学

我们已经发现,原来文章之一[ 1 ]的研究结果,即无量纲参数的实际选择χ 0的离子热conductivity11 * χ 0是通过归一化Braginskii离子平行导热率来获得骨灰盒:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0001,与骨灰盒:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0002似乎对模拟结果没有作用,不是物理上的。取而代之的是,由于在输入参数,处理一个错误χ 0实际上不是在代码中使用-无量纲电子热

电导率χ Ë 0被替代地使用。因此,在第4章的结果和结论是正确的仅当χ 0  =  χ Ë 0。对于参考的情况下,此装置χ 0  =  χ Ë 0  = 26.6使用,22 我们有氘χ 0 / χ ë 0  = 23≠35由于电子碰撞频率与计算出的Ž EFF  = 1.5而不是什么我们认为是χ 0  = 1.15χ Ë 0  = 26.6。其余的代码和模型是正确的。

我们已经修复了错误,验证了代码,然后重新运行所有仿真。的主要结论是,无量纲离子热导率χ 0戏剧作为多大作用的平衡离子的温度分布的Ť作为电子热导率χ Ë 0用于电子轮廓Ť ë。此外,在正确的热传导率χ 0  = 1.15Ť饱和更快-后骨灰盒:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0003毫秒-而它仍然没有在1.5毫秒与错误的饱和χ 0 =  χ Ë 0  = 26.6。等离子体密度n和电子温度T e的饱和时间保持不变骨灰盒:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0004

左图1显示了用于参考模拟的饱和径向轮廓。我们发现,相比于错误地使用χ 0  = 26.6,适当的,较低离子热导率χ 0  = 1.15的增加而固定离子温度梯度ř Ť在限定区域,从而导致Ť <  Ť e在分隔线处。所述Ť的个人资料和波动水平现在是类似于那些等离子体密度的Ñ。的Ť ËÑ配置文件不受影响。静电电位的固定轮廓φ在受限区域由于较低的变平Ť,同时它保持在跟随SOL相同Ť ë。在远SOL,Ť >  Ť Ë没有这个边界条件不同的情况下( -被发现由于电子鞘传热γ ë  = 0)。我们注意到,先前观察到的结果,也就是在分隔线处的T i  >  T e,在更高的温度下又恢复了,参见图1中双温情况。

CTPP-202000056-FIG-0001-c
图1
在图形查看器中打开PowerPoint
外侧中平面处于饱和状态时的平均径向轮廓(T iT enϕ)。虚线表示± σ ˚F变动水平。负电位- φ和其波动水平通过划分Λ= 2.69。LCFS和源区域已标记。左:在核心边界处T e  =  T i  = 90 eV的参考案例,另外还有来自模拟的T e曲线,没有护套热传导(第4.1章的案例1,γ ë  = 0)。右图:双温度模拟
CTPP-202000056-图-0002-c
图2
在图形查看器中打开PowerPoint
极向和环向平均静电势波动的频谱

原始文章[ 1 ]的其他结果至少在定性上成立。图2所示的GAM频谱在数量上有所不同。与下部离子热导率χ 0,离子温度变动较多,但整体的紊流仍然随密度增强,并且随着温度的升高受到抑制,参见图3。在例2和3中从第4.1章,我们已经有了χ 0  =  χ è 0(和壳体4实际上几乎相同的参考方案),所以结果认为,减少χ 0χ Ë 0低于0.1对外侧平面轮廓没有影响。

CTPP-202000056-FIG-0003-c
图3
在图形查看器中打开PowerPoint
外部中平面离子温度快照在1.44 ms处处于:双倍密度,参考值,双倍温度(从左到右)。横轴为R  -  R 0)/ R 0。LCFS用蓝色虚线标记

我们另外此话该玻姆鞘平行速度的边界条件(7)应包含Ť骨灰盒:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0005。此外,还有在索引中的错误公式(9):不是p +  Ĵ,应该阅读骨灰盒:x-wiley:08631042:media:ctpp202000056:ctpp202000056-math-0006

更新日期:2020-07-28
down
wechat
bug