当前位置: X-MOL 学术J. Biomed. Mater. Res. Part B Appl. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A metallic biomaterial tribocorrosion model linking fretting mechanics, currents, and potentials: Model development and experimental comparison.
Journal of Biomedical Materials Research Part B: Applied Biomaterials ( IF 3.2 ) Pub Date : 2020-06-14 , DOI: 10.1002/jbm.b.34643
Jeremy L Gilbert 1, 2, 3, 4 , Dongkai Zhu 1, 2, 3, 4
Affiliation  

Mechanically assisted crevice corrosion may disrupt passive oxide films on medical alloys and lead to rapid repassivation reactions which generate corrosion currents and shifts in electrode potential due to the non‐equilibrium nature of the reactions and the transient unbalancing of anodic and cathodic reactions. This study presents a theoretical approach to predict currents and voltages over time utilizing the concepts of heredity integrals, area‐dependent surface impedance, contact mechanics and the high field physics of oxide repassivation. Two heredity integrals are presented relating, first, the sliding mechanics and oxide film repassivation physics to the current, and second, relating the electrode potential to the current using impedance concepts. Current–potential–time responses to controlled fretting conditions were measured across a fretting frequency from 0.2 to 10 Hz and compared to theoretical results. The coupled integrals were shown to predict the overall current–potential–time behavior for CoCrMo alloy surfaces under several controlled fretting corrosion conditions (loads, sliding speeds, etc.) with a high degree of similarity. These models can be adapted to numerical analyses of tribocorrosion to predict performance.

中文翻译:

连接微动力学、电流和电位的金属生物材料摩擦腐蚀模型:模型开发和实验比较。

机械辅助缝隙腐蚀可能会破坏医用合金上的钝化氧化膜,并导致快速的再钝化反应,由于反应的非平衡性质以及阳极和阴极反应的瞬时不平衡,会产生腐蚀电流和电极电位的变化。本研究提出了一种理论方法,利用遗传积分、面积相关表面阻抗、接触力学和氧化物再钝化的高场物理等概念,随时间预测电流和电压。提出了两个遗传积分,第一,滑动力学和氧化膜再钝化物理与电流相关,第二,使用阻抗概念将电极电位与电流相关。在 0.2 到 10 Hz 的微动频率范围内测量对受控微动条件的电流-电位-时间响应,并与理论结果进行比较。耦合积分可以预测 CoCrMo 合金表面在几种受控微动腐蚀条件(载荷、滑动速度等)下的整体电流-电位-时间行为,具有高度的相似性。这些模型可适用于摩擦腐蚀的数值分析以预测性能。
更新日期:2020-06-14
down
wechat
bug