当前位置: X-MOL 学术Curr. Bioinform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relevance of Molecular Docking Studies in Drug Designing
Current Bioinformatics ( IF 2.4 ) Pub Date : 2020-05-01 , DOI: 10.2174/1574893615666191219094216
Ritu Jakhar 1 , Mehak Dangi 1 , Alka Khichi 1 , Anil Kumar Chhillar 1
Affiliation  

Molecular Docking is used to positioning the computer-generated 3D structure of small ligands into a receptor structure in a variety of orientations, conformations and positions. This method is useful in drug discovery and medicinal chemistry providing insights into molecular recognition. Docking has become an integral part of Computer-Aided Drug Design and Discovery (CADDD). Traditional docking methods suffer from limitations of semi-flexible or static treatment of targets and ligand. Over the last decade, advances in the field of computational, proteomics and genomics have also led to the development of different docking methods which incorporate protein-ligand flexibility and their different binding conformations. Receptor flexibility accounts for more accurate binding pose predictions and a more rational depiction of protein binding interactions with the ligand. Protein flexibility has been included by generating protein ensembles or by dynamic docking methods. Dynamic docking considers solvation, entropic effects and also fully explores the drug-receptor binding and recognition from both energetic and mechanistic point of view. Though in the fast-paced drug discovery program, dynamic docking is computationally expensive but is being progressively used for screening of large compound libraries to identify the potential drugs. In this review, a quick introduction is presented to the available docking methods and their application and limitations in drug discovery.



中文翻译:

分子对接研究在药物设计中的相关性

分子对接用于将计算机生成的小配体的3D结构以各种方向,构象和位置定位到受体结构中。此方法可用于药物发现和药物化学,提供对分子识别的见解。对接已成为计算机辅助药物设计和发现(CADDD)不可或缺的一部分。传统的对接方法受靶和配体的半柔性或静态处理的限制。在过去的十年中,计算,蛋白质组学和基因组学领域的进步也导致了开发各种结合了蛋白质-配体灵活性及其不同结合构象的对接方法。受体柔韧性说明了更准确的结合姿势预测和对与配体的蛋白质结合相互作用的更合理描述。通过产生蛋白质集合或通过动态对接方法已经包括了蛋白质的柔韧性。动态对接考虑了溶剂化,熵作用,并且从能量和力学角度全面研究了药物受体的结合和识别。尽管在快节奏的药物发现程序中,动态对接在计算上是昂贵的,但已逐渐用于筛选大型化合物库以识别潜在的药物。在这篇综述中,快速介绍了可用的对接方法及其在药物发现中的应用和局限性。通过产生蛋白质集合或通过动态对接方法已经包括了蛋白质的柔韧性。动态对接考虑了溶剂化,熵作用,并且从能量和力学角度全面研究了药物受体的结合和识别。尽管在快节奏的药物发现程序中,动态对接在计算上是昂贵的,但已逐渐用于筛选大型化合物库以识别潜在的药物。在这篇综述中,快速介绍了可用的对接方法及其在药物发现中的应用和局限性。通过产生蛋白质集合或通过动态对接方法已经包括了蛋白质的柔韧性。动态对接考虑了溶剂化,熵作用,并且从能量和力学角度全面研究了药物受体的结合和识别。尽管在快节奏的药物发现程序中,动态对接在计算上是昂贵的,但已逐渐用于筛选大型化合物库以识别潜在的药物。在这篇综述中,快速介绍了可用的对接方法及其在药物发现中的应用和局限性。动态对接在计算上很昂贵,但已逐渐用于筛选大型化合物库以识别潜在药物。在这篇综述中,快速介绍了可用的对接方法及其在药物发现中的应用和局限性。动态对接在计算上很昂贵,但已逐渐用于筛选大型化合物库以识别潜在药物。在这篇综述中,快速介绍了可用的对接方法及其在药物发现中的应用和局限性。

更新日期:2020-05-01
down
wechat
bug