当前位置: X-MOL 学术Phytochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC
Phytochemistry ( IF 3.8 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.phytochem.2020.112434
Lin-Lin Yang 1 , Li Yang 1 , Xiao Yang 2 , Tao Zhang 3 , Yi-Ming Lan 1 , Yu Zhao 1 , Mei Han 1 , Li-Min Yang 1
Affiliation  

Drought stress affects vegetative and reproductive growth processes and synthesis of secondary metabolites in plants. We assessed relevant indicators of vegetative and reproductive growth in Bupleurum chinense DC. during drought stress. Samples were collected on days 4, 8, 12, 20, and 24 of a drought treatment according to drought stress severity in order to elucidate potential effects on synthesis of flavonoids in leaves and saikosaponins in roots of B. chinense. The results showed that B. chinense can adapt to drought stress mainly by increasing concentrations of osmoregulatory substances (soluble protein and proline) and increasing activity of protective enzymes (superoxide dismutase and catalase), as observed on days 12 and 20 of the treatment. Secondary metabolite concentrations in B. chinense roots and leaves showed significant differences-drought stress increased saikosaponin concentrations in roots by 9.85% and 6.41% during vegetative and reproductive growth, respectively, on day 20, and saikosaponin concentrations in roots were higher during vegetative growth than during reproductive growth. In leaves, large amounts of antioxidants were consumed owing to drought stress, which decreased leaf rutin concentrations by 38.79% and 30.11% during vegetative and reproductive growth, respectively, as observed on day 20; overall, leaf rutin concentrations were lower during vegetative growth than during reproductive growth. Changes in soil water content are known to affect synthesis of secondary metabolites in medicinal plants by altering gene transcription, and affected genes may synergistically respond to soil water changes and alter concentrations of flavonoid in leaves and of saikosaponin in roots. The gene F3H down-regulates flavonoid production in leaves. Squalene epoxidase and β-amyrin synthase genes may be key genes regulating saikosaponin accumulation, and changes in their expression corresponded to accumulation of saikosaponins. Our results provide insights in B. chinense adaptation to drought stress through physiological changes and regulation of secondary metabolite production in different plant tissues.
更新日期:2020-09-01
down
wechat
bug