当前位置: X-MOL 学术Biomech. Model. Mechanobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wrinkling instabilities for biologically relevant fiber-reinforced composite materials with a case study of Neo-Hookean/Ogden-Gasser-Holzapfel bilayer.
Biomechanics and Modeling in Mechanobiology ( IF 3.0 ) Pub Date : 2020-06-13 , DOI: 10.1007/s10237-020-01345-0
Nhung Nguyen 1 , Nandan Nath 2 , Luca Deseri 3, 4, 5, 6, 7 , Edith Tzeng 2 , Sachin S Velankar 1, 4 , Luka Pocivavsek 8
Affiliation  

Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial health. As arteries are highly nonlinear, anisotropic, multilayered composite systems, it is necessary to investigate wrinkling incorporating these material characteristics. Several studies have examined surface wrinkling mechanisms with nonlinear isotropic material relationships. Nevertheless, wrinkling associated with anisotropic constitutive models such as Ogden–Gasser–Holzapfel (OGH), which is suitable for soft biological tissues, and in particular arteries, still requires investigation. Here, the effects of OGH parameters such as fibers’ orientation, stiffness, and dispersion on the onset of wrinkling, wrinkle wavelength and amplitude are elucidated through analysis of a bilayer system composed of a thin, stiff neo-Hookean membrane and a soft OGH substrate subjected to compression. Critical contractile strain at which wrinkles occur is predicted using both finite element analysis and analytical linear perturbation approach. Results suggest that besides stiffness mismatch, anisotropic features associated with fiber stiffness and distribution might be used in natural layered systems to adjust wrinkling and subsequent folding behaviors. Further analysis of a bilayer system with fibers in the (xy) plane subjected to compression in the x direction shows a complex dependence of wrinkling strain and wavelength on fiber angle, stiffness, and dispersion. This behavior is captured by an approximation utilizing the linearized anisotropic properties derived from OGH model. Such understanding of wrinkling in this artery wall-like system will help identify the role of wrinkling mechanisms in biological artery in addition to the design of its synthetic counterparts.



中文翻译:


以 Neo-Hookean/Ogden-Gasser-Holzapfel 双层为例的生物相关纤维增强复合材料的起皱不稳定性。



皱纹是许多生物组织中普遍存在的表面现象,被认为在动脉健康中发挥着重要作用。由于动脉是高度非线性、各向异性的多层复合系统,因此有必要研究结合这些材料特性的皱纹。一些研究利用非线性各向同性材料关系检验了表面起皱机制。然而,与各向异性本构模型(例如 Ogden-Gasser-Holzapfel (OGH))相关的皱纹仍然需要研究,该模型适用于软生物组织,特别是动脉。在这里,通过分析由薄而硬的 Neo-Hookean 膜和柔软的 OGH 基材组成的双层系统,阐明了 OGH 参数(例如纤维的取向、刚度和色散)对起皱、起皱波长和幅度的影响受到压缩。使用有限元分析和分析线性扰动方法来预测出现皱纹的临界收缩应变。结果表明,除了刚度失配之外,与纤维刚度和分布相关的各向异性特征也可用于自然分层系统中,以调整起皱和随后的折叠行为。对 ( xy ) 平面中的纤维在x方向上受到压缩的双层系统的进一步分析表明,起皱应变和波长对纤维角度、刚度和色散具有复杂的依赖性。这种行为是通过利用从 OGH 模型导出的线性各向异性属性的近似来捕获的。 除了设计其合成对应物之外,对这种动脉壁样系统中的皱纹的了解将有助于确定生物动脉中皱纹机制的作用。

更新日期:2020-06-13
down
wechat
bug