当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-performance, long lifetime chloride ion battery using a NiFe–Cl layered double hydroxide cathode
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2020-06-11 , DOI: 10.1039/d0ta04290k
Qing Yin 1, 2, 3, 4, 5 , Jianeng Luo 1, 2, 3, 4, 5 , Jian Zhang 1, 2, 3, 4, 5 , Lirong Zheng 5, 6, 7, 8 , Guoqing Cui 1, 2, 3, 4, 5 , Jingbin Han 1, 2, 3, 4, 5 , Dermot O'Hare 9, 10, 11, 12, 13
Affiliation  

Chloride ion batteries (CIBs) are an example of a promising new emerging rechargeable battery technology, that exhibits large theoretical volumetric energy density performance and good safety. However, unsatisfactory capacity and poor cycling lifetime of the cathode currently hinder the development of CIBs. Herein, we report the use of an Ni2+Fe3+-based layered double hydroxide (LDH) intercalated by chloride ions as a promising cathode material for CIBs. [Ni2Fe(OH)6]Cl·1.37H2O (NiFe–Cl LDH) exhibits a high maximum capacity of 350.6 mA h g−1 and a long lifetime of over 800 cycles (at 101.1 mA h g−1) at a current density of 100 mA g−1, which is superior to most currently reported CIB cathodes. In situ X-ray absorption near-edge structure (XANES) and ex situ X-ray photoelectron spectroscopy (XPS) reveal the valency changes of the Fe2+/Fe3+ and Ni2+/Ni3+ redox pairs within the metal hydroxide layers of the LDH during electrochemcial cycling. In situ XRD reveals that 2D anion diffusion within the LDH results in only ∼3% structural change. Oxygen K-edge soft X-ray absorption spectroscopy (SXAS) reveals the oxygen atoms within the MO6 octahedra reversibly participate in the electrochemical reaction. In view of the extensive chemical variation, low-cost, and ease-of-preparation of LDH-based materials we regard LDHs as a promising materials platform for application as cathode materials in chloride ion batteries.

中文翻译:

高性能,长寿命的氯离子电池,使用NiFe–Cl层状双氢氧化物阴极

氯离子电池(CIB)是一种有前途的新兴可充电电池技术的示例,该技术具有较大的理论体积能量密度性能和良好的安全性。但是,阴极的容量不足和循环寿命差目前阻碍了CIB的发展。在本文中,我们报道了使用嵌入氯离子的Ni 2+ Fe 3+基层状双氢氧化物(LDH)作为CIB的有希望的阴极材料。[Ni 2 Fe(OH)6 ] Cl·1.37H 2 O(NiFe–Cl LDH)在高温下显示出350.6 mA hg -1的最大最大容量,并在800个循环(101.1 mA hg -1)下具有较长的寿命。电流密度100 mA g -1,它优于目前报告的大多数CIB阴极。原位X射线吸收近边结构(XANES)和易地X射线光电子能谱(XPS)显示Fe的化合价变化2+ / Fe的3+和Ni 2+ /镍3+的氧化还原对的金属内电化学循环过程中LDH的氢氧化物层。原位XRD显示LDH内2D阴离子的扩散仅导致约3%的结构变化。氧K边缘软X射线吸收光谱(SXAS)揭示了MO 6中的氧原子八面体可逆地参与电化学反应。鉴于基于LDH的材料的广泛化学变化,低成本和易于制备,我们将LDHs用作在氯离子电池中用作阴极材料的有前途的材料平台。
更新日期:2020-06-30
down
wechat
bug