当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-06-12 , DOI: 10.1039/d0ee00993h
Jie Chen 1, 2, 3, 4, 5 , Jiang Li 1, 2, 3, 4, 5 , Qian Li 6, 7, 8, 9 , Shuai Wang 1, 2, 3, 4, 5 , Lihua Wang 1, 2, 3, 4, 5 , Huajie Liu 9, 10, 11, 12, 13 , Chunhai Fan 6, 7, 8, 9
Affiliation  

Photobiological hydrogen generation is among the most promising routes for the mass production of hydrogen energy. However, the cost and sustainability of photobiological methods largely hamper their large-scale commercial production. Here, we design an anaerobic environment with a constant near-neutral pH for the sustainable induction of green algae flocculation by engineering a robust chemoenzymatic cascade system consisting of glucose, glucose oxidase, catalase, and magnesium hydroxide. We found that Chlamydomonas reinhardtii could stably produce hydrogen in this engineered photobiological system for nearly a month, with an average rate of 0.44 μmol H2 h−1 (mg chlorophyll)−1. This study thus opens a new avenue to photobiological hydrogen production at industrial scales for promising “liquid sunshine” applications.

中文翻译:

设计化学酶联反应,利用绿藻可持续生产光生物氢

光生物制氢是大规模生产氢能的最有希望的途径之一。然而,光生物学方法的成本和可持续性极大地阻碍了它们的大规模商业生产。在这里,我们通过设计由葡萄糖,葡萄糖氧化酶,过氧化氢酶和氢氧化镁组成的强大的化学酶联反应系统,设计了一个恒定的接近中性pH值的厌氧环境,以可持续诱导绿藻絮凝。我们发现莱茵衣藻在该工程光生物系统中可以稳定产生氢近一个月,平均速率为0.44μmolH 2 h -1(mg叶绿素)-1。因此,这项研究为工业规模的光生物制氢开辟了新的途径,有望用于“液态阳光”应用。
更新日期:2020-07-15
down
wechat
bug