当前位置: X-MOL 学术npj 2D Mater. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sub-picosecond photo-induced displacive phase transition in two-dimensional MoTe 2
npj 2D Materials and Applications ( IF 9.1 ) Pub Date : 2020-06-12 , DOI: 10.1038/s41699-020-0147-x
Bo Peng , Hao Zhang , Weiwen Chen , Bowen Hou , Zhi-Jun Qiu , Hezhu Shao , Heyuan Zhu , Bartomeu Monserrat , Desheng Fu , Hongming Weng , Costas M. Soukoulis

Photo-induced phase transitions (PIPTs) provide an ultrafast, energy-efficient way for precisely manipulating the topological properties of transition-metal ditellurides and can be used to stabilize a topological phase in an otherwise semiconducting material. Using first-principles calculations, we demonstrate that the PIPT in monolayer MoTe2 from the semiconducting 2H phase to the topological 1T′ phase can be triggered purely by electronic excitations that soften multiple lattice vibrational modes. These softenings, driven by a Peierls-like mechanism within the conduction bands, lead to structural symmetry breaking within sub-picosecond timescales, which is shorter than the timescale of a thermally driven phase transition. The transition is predicted to be triggered by photons with energies over 1.96 eV, with an associated excited carrier density of 3.4 × 1014 cm−2, which enables a controllable phase transformation by varying the laser wavelength. Our results provide insight into the underlying physics of the phase transition in 2D transition-metal ditellurides and show an ultrafast phase-transition mechanism for manipulation of the topological properties of 2D systems.



中文翻译:

二维MoTe 2中亚皮秒光致位移相变

光致相变(PIPT)提供了一种超快,节能的方法,可精确地控制过渡金属二碲化物的拓扑特性,并可用于稳定其他半导体材料中的拓扑相。使用第一性原理计算,我们证明了单层MoTe 2中的PIPT从半导电的2H相到拓扑的1T'相可以完全通过电子激励来触发,该激励会软化多个晶格振动模式。这些软化是由导带内的类似Peierls的机理驱动的,导致在亚皮秒级的时间尺度内破坏了结构对称性,该对称性比热驱动的相变的时间尺度短。预计该跃迁由能量超过1.96 eV的光子触发,相关的激发载流子密度为3.4×10 14  cm -2,通过改变激光波长可以实现可控的相变。我们的结果提供了对2D过渡金属二碲化物中相变的基本物理学的了解,并显示了用于控制2D系统拓扑特性的超快速相变机制。

更新日期:2020-06-12
down
wechat
bug