当前位置: X-MOL 学术Front. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low-Field MRI: How Low Can We Go? A Fresh View on an Old Debate
Frontiers in Physics ( IF 1.9 ) Pub Date : 2020-04-23 , DOI: 10.3389/fphy.2020.00172
Mathieu Sarracanie , Najat Salameh

For about 30 years, MRI set cruising speed at 1.5 T of magnetic field, with a gentle transition toward 3 T systems. In its first 10 years of existence, there was an open debate on the question of most relevant MRI field strengths considering the gain in T1 contrast, simpler cooling strategies, lower predisposition to generating image artifacts, and naturally cost reduction of small footprint low field systems. At the time, the inherent gain in sensitivity of high field, which would translate in more signal per unit time, quickly ended this debate. The promise of rapid exams or higher image resolution within a reasonable time won over other considerations and set the standards for MR value. Yet, many reasons bring low field MRI in a situation quite different from 40 years ago. From the achieved progress regarding all aspects of MRI technology, an MR scan at 1.5 T in the mid 1980s has very little in common with the equivalent scan in 2020. That clearly indicates that field strength alone is not what drives performance. It is also unlikely that the total number of machines worldwide will grow so to follow the increasing demand considering their overall cost (~$1M/T). The natural trend is to better control medical expenses worldwide, and reconsidering low-field MRI could lead to the democratization of dedicated, point-of-care devices to decongest high-field clinical scanners. In the present article, we aim to draw an extensive portrait of most recent MRI developments at low (1–199 mT) and ultra-low field (micro-Tesla range) outside of the commercial sphere, and we propose to discuss their potential relevance in future clinical applications. We will cover a broad spectrum from pre-polarized MRI using ultra-sensitive magnetic sensors up to permanent and resistive magnets in compact designs.



中文翻译:

低场MRI:我们能走多低?关于旧辩论的新观点

在大约30年的时间里,MRI将巡航速度设定为1.5 T磁场,并逐渐过渡到3 T系统。在其存在的头10年中,就有关最重要的MRI场强的问题进行了公开辩论,其中考虑了Ť1个相比之下,更简单的冷却策略,更低的产生图像伪像的倾向以及自然而然地降低了小尺寸低场系统的成本。当时,高磁场灵敏度的固有增益(每单位时间转换成更多信号)迅速结束了这场争论。在合理的时间内做出快速检查或更高图像分辨率的承诺赢得了其他考虑,并树立了MR值标准。然而,许多原因导致低场MRI的情况与40年前大不相同。从MRI技术各个方面取得的进展来看,1980年代中期的1.5 T MR扫描与2020年的等效扫描几乎没有共同点。这清楚地表明,单独的场强并不是驱动性能的因素。考虑到它们的整体成本(〜100万美元/吨),全球的机器总数也不大可能跟随需求的增长而增长。自然的趋势是更好地控制全球医疗费用,重新考虑低场MRI可能导致专用的现场护理设备民主化,以减轻高场临床扫描仪的拥挤。在本文中,我们旨在广泛地描述商业领域之外低(1–199 mT)和超低场(微特斯拉范围)的最新MRI发展情况,并建议讨论它们的潜在相关性在未来的临床应用中。我们将涵盖从超极化MRI(使用超灵敏磁传感器)到紧凑设计中的永磁和电阻磁体的广泛范围。自然的趋势是更好地控制全球医疗费用,重新考虑低场MRI可能导致专用的现场护理设备民主化,以减轻高场临床扫描仪的拥挤。在本文中,我们旨在广泛地描述商业领域之外低(1–199 mT)和超低场(微特斯拉范围)的最新MRI发展情况,并建议讨论它们的潜在相关性在未来的临床应用中。我们将涵盖从超极化MRI(使用超灵敏磁传感器)到紧凑设计中的永磁和电阻磁体的广泛范围。自然的趋势是更好地控制全球医疗费用,重新考虑低场MRI可能导致专用的现场护理设备民主化,以减轻高场临床扫描仪的拥挤。在本文中,我们旨在广泛地描述商业领域之外低(1–199 mT)和超低场(微特斯拉范围)的最新MRI发展情况,并建议讨论它们的潜在相关性在未来的临床应用中。我们将涵盖从超极化MRI(使用超灵敏磁传感器)到紧凑设计中的永磁和电阻磁体的广泛范围。我们的目的是在商业领域之外的低磁场(1-199 mT)和超低磁场(micro-Tesla范围)上绘制最新MRI发展的广泛肖像,并建议讨论它们在未来临床应用中的潜在相关性。我们将涵盖从超极化MRI(使用超灵敏磁传感器)到紧凑设计中的永磁和电阻磁体的广泛范围。我们的目的是在商业领域以外的低磁场(1-199 mT)和超低磁场(micro-Tesla范围)上绘制最新MRI发展的广泛肖像,并建议讨论它们在未来临床应用中的潜在相关性。从超极化磁传感器(使用超灵敏磁传感器)到紧凑型设计中的永磁和电阻磁体,我们将涵盖广泛的领域。

更新日期:2020-04-23
down
wechat
bug