当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Kinetics Harvested in Heteroatom Dual‐Doped Graphitic Hollow Architectures toward High Rate Printable Potassium‐Ion Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-06-11 , DOI: 10.1002/aenm.202001161
Chen Lu 1, 2 , Zhongti Sun 1 , Lianghao Yu 1 , Xueyu Lian 1 , Yuyang Yi 1 , Jie Li 3 , Zhongfan Liu 1, 4 , Shixue Dou 2 , Jingyu Sun 1
Affiliation  

Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g−1 at 20 A g−1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g−1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm−2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications.

中文翻译:

杂原子双掺杂石墨空心结构在高速可印刷钾离子电池中收获的增强动力学

含碳材料已经成为钾离子电池(PIB)的有希望的阳极候选材料,原因是它具有压倒性的优势,包括成本效益和材料的广泛可用性。但是,该领域的进一步发展因其目标内和大规模合成的不足以及其低的比容量和巨大的体积扩展而受到阻碍。本文报道了通过直接等离子增强化学气相沉积技术精确,可扩展地合成N / S双掺杂石墨空心结构(NSG)的方法。如此制成的NSG具有均匀的氮/硫共掺杂,拥有充足的钾亲表面部分,有效的电子/离子传输途径和高结构稳定性,使其具有高倍率能力(在20 A g时约为100 mAh g -1 -1)和延长的循环寿命(5000次循环后在5 A g -1下的容量保持率为90.2%),这是迈向高性能K-离子存储的重要步骤。通过理论模拟结合操作拉曼光谱,非原位X射线光电子能谱和恒电流间歇滴定技术测量,系统地探索了NSG阳极增强的动力学。在另外的背景下,实现了具有可调质量负载(1.84、3.64和5.65 mg cm -2)的印刷NSG电极,以显示高的面容量。这项研究演示了可打印碳基PIB阳极的构造,这对下一代网格规模PIB应用具有广阔的前景。
更新日期:2020-07-28
down
wechat
bug