当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Nitrogen‐Doped Covalent Triazine‐Based Multiporous Cross‐Linking Framework for High‐Performance Energy Storage
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2020-06-11 , DOI: 10.1002/aelm.202000253
Chuanguang Wu 1 , Hao Zhang 1 , Mingjun Hu 1 , Guangcun Shan 2 , Jiefeng Gao 3 , Jinzhang Liu 1 , Xianglin Zhou 4 , Jun Yang 5
Affiliation  

Porous carbon as an electrode material has attracted extensive attention in the field of energy storage. Herein, to promote the energy density of carbon‐based materials, a class of in situ nitrogen‐doped 3D carbon skeleton with hierarchical pores through the structural evolution of pyridine‐incorporated porous covalent triazine‐based framework (p‐CTFs) is rationally designed and prepared. The controlled microscopic pore structure and nitrogen doping concentration can be achieved by varying the polymerization temperature. The experimental results show that p‐CTF‐800 has a large specific surface area (2795 m2 g−1), a rich nitrogen content (11.82%), and a broad pore size distribution (0.65–5 nm), and exhibited an excellent specific capacitance of 406 F g−1 in three‐electrode system and 245.7 F g−1 in water‐based symmetric supercapacitor. When using ionic liquid 1‐ethyl‐3‐methylimidazolium tetraflfluoroborate as electrolyte, the energy density can reach 77 Wh kg−1 at a power density of 175 W kg−1, and still remain at 56.4 Wh kg−1 even at a power density up to 8749 W kg−1. Moreover, p‐CTF‐800‐supercapacitor presents excellent cyclic stability (94% energy retention after 20 000 cycles for IL electrolytes) under current density of 4 A g−1. These results indicate that as‐prepared p‐CTFs can behave as excellent electrode candidate materials for the future high‐performance energy storage devices.

中文翻译:

原位氮掺杂的基于共价三嗪的多孔交联框架,用于高性能储能

多孔碳作为电极材料在储能领域引起了广泛的关注。在本文中,为了提高碳基材料的能量密度,合理设计了一类通过掺吡啶的多孔共价三嗪基多孔骨架(p-CTFs)的结构演化,具有分级孔的原位氮掺杂3D碳骨架,并准备好了。可以通过改变聚合温度来实现受控的微观孔结构和氮掺杂浓度。实验结果表明,p-CTF-800具有较大的比表面积(2795 m 2 g -1),丰富的氮含量(11.82%)和宽的孔径分布(0.65–5 nm),并且具有406 F g -1的优异比电容在三电极系统中为245.7 F g -1在水基对称超级电容器中。当使用离子液体1-乙基-3-甲基咪唑四氟氟硼酸盐作为电解质时,在175 W kg -1的功率密度下能量密度可以达到77 Wh kg -1,即使在功率密度下仍保持在56.4 Wh kg -1高达8749 W kg -1。此外,p-CTF-800超级电容器在4 A g -1的电流密度下具有出色的循环稳定性(IL电解质2万次循环后94%的能量保持)。这些结果表明,所制备的p-CTF可以作为未来高性能储能设备的极佳电极候选材料。
更新日期:2020-07-13
down
wechat
bug